ABSTRACT
Motivating by recent experiments on surface enhanced Raman scattering (SERS) from colloidal solutions, we present here a simple model to elucidate the effects of extraneous surface charges on the enhanced Raman signal. The model is based on the well-established Gersten-Nitzan model coupled to the modified Mie scattering theory of Bohren and Hunt in the long wavelength approximation. We further introduce corrections from the modified long wavelength approximation to the Gersten-Nitzan model for the improvement of its accuracy. Our results show that the surface charge will generally lead to a blueshift in the resonance frequency and greater enhancements in the SERS spectrum. Possible correlations with the recent experiments are elaborated.
ACKNOWLEDGMENTS
This research is supported by financial aids from National Science Council, Taiwan under Grant Nos. NSC 100-2923-M-002-007-MY3, NSC 101-3113-P-002-021, and NSC 101-2112-M-002-023. We are also grateful to Molecular Imaging Center of National Taiwan University for their support.
- 1.
M. Fleischmann, P. J. Hendra, and A. J. McQuillan, Chem. Phys. Lett. 26, 163 (1974); https://doi.org/10.1016/0009-2614(74)85388-1 , Google ScholarCrossref, ISI
D. L. Jeanmaire and R. P. Van Duyne, J. Electroanal. Chem. 84, 1 (1977); https://doi.org/10.1016/S0022-0728(77)80224-6 , , Google ScholarCrossref, ISI
M. G. Albrecht and J. A. Creighton, J. Am. Chem. Soc. 99, 5215 (1977). https://doi.org/10.1021/ja00457a071 , , Google ScholarCrossref, ISI - 2.
For earlier review, see, e.g., M. Moskovits, Rev. Mod. Phys. 57, 783 (1985); https://doi.org/10.1103/RevModPhys.57.783 , Google ScholarCrossref, ISI
for more recent review, see, e.g., P. Stiles, J. Dieringer, N. C. Shah, and R. P. Van Duyne, Annu. Rev. Anal. Chem. 1, 601–626 (2008). https://doi.org/10.1146/annurev.anchem.1.031207.112814 , , Google ScholarCrossref, ISI - 3.
See also, Surface-Enhanced Raman Scattering: Physics and Applications, edited by K. Kneipp, M. Moskovits, and H. Kneipp (Springer, Heidelberg, 2006); Google ScholarCrossref
P. G. Etchegoin and E. C. Le Ru, Principles of Surface-Enhanced Raman Spectroscopy: And Related Plasmonic Effects (Elsevier, Amsterdam, 2009). , Google Scholar - 4. J. Mullin, N. Valley, M. G. Blaber, and G. C. Schatz, J. Phys. Chem. A 116, 9574 (2012). https://doi.org/10.1021/jp307003p , Google ScholarCrossref
- 5.
P. Johansson, M. Kall, and H. Xu, Phys. Rev. B 72, 035407 (2005); https://doi.org/10.1103/PhysRevB.72.035427 , Google ScholarCrossref
J. W. Gibson and B. R. Johnson, J. Chem. Phys. 124, 064701 (2006). https://doi.org/10.1063/1.2147119 , , Google ScholarScitation, ISI - 6. R. A. Alvarez-Puebla, E. Arceo, P. J. G. Goulet, J. J. Garrido, and R. F. Aroca, J. Phys. Chem. B 109, 3787 (2005). https://doi.org/10.1021/jp045015o , Google ScholarCrossref
- 7. A. Zhang and Y. Fang, J. Colloid Interface Sci. 305, 270 (2007). https://doi.org/10.1016/j.jcis.2006.09.068 , Google ScholarCrossref
- 8. J. Gersten and A. Nitzan, J. Chem. Phys. 73, 3023 (1980). https://doi.org/10.1063/1.440560 , Google ScholarScitation, ISI
- 9. C. F. Bohren and A. J. Hunt, Can. J. Phys. 55, 1930 (1977). https://doi.org/10.1139/p77-235 , Google ScholarCrossref
- 10.
Note that we follow Ref. 8 to adopt the so-called |E|4 approximation for simple illustration purpose. More discussion on this approximation can be found in E. C. Le Ru and P. Etchegoin, Chem. Phys. Lett. 423, 63 (2006); https://doi.org/10.1016/j.cplett.2006.03.042 , Google ScholarCrossref
E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, J. Phys. Chem. C 111, 13794 (2007). See also the text by P. G. Etchegoin and E. C. Le Ru in Ref. 3. https://doi.org/10.1021/jp0687908 , , Google ScholarCrossref, ISI - 11.
One can, for example, apply the results in Eqs. (7) and (8) (with τ = 0) to Ruppin's electrodynamic results for the dipole decay rates outside a sphere [see, R. Ruppin, J. Chem. Phys. 76, 1681 (1982)] https://doi.org/10.1063/1.443196 , Google ScholarScitation, ISI
and derive the corresponding quasi-static results obtained in J. Gersten and A. Nitzan, J. Chem. Phys. 75, 1139 (1981) which were completely accounted for via the polarizability in Eq. (9). https://doi.org/10.1063/1.442161 , , Google ScholarScitation, ISI - 12. M. Meier and A. Wokaun, Opt. Lett. 8, 581 (1983). https://doi.org/10.1364/OL.8.000581 , Google ScholarCrossref
- 13. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys. Chem. B 107, 668 (2003). https://doi.org/10.1021/jp026731y , Google ScholarCrossref, ISI
- 14. H. Y. Chung, G. Y. Guo, H. P. Chiang, D. P. Tsai, and P. T. Leung, Phys. Rev. B 82, 165440 (2010). https://doi.org/10.1103/PhysRevB.82.165440 , Google ScholarCrossref
- 15. H. Y. Chung, P. T. Leung, and D. P. Tsai, Plasmonics 7, 13 (2012). https://doi.org/10.1007/s11468-011-9269-5 , Google ScholarCrossref
- 16. H. Mertens, A. F. Koenderink, and A. Polman, Phys. Rev. B 76, 115123 (2007). https://doi.org/10.1103/PhysRevB.76.115123 , Google ScholarCrossref
- 17. N. W. Ashcroft and N. D. Mermin, Solid State Physics (W. B. Saunders, Philadelphia, 1976). Google Scholar
- 18. J. Klacka and M. Kocifaj, J. Quant. Spectrosc. Radiat. Transf. 106, 170 (2007). https://doi.org/10.1016/j.jqsrt.2007.01.016 , Google ScholarCrossref
- 19. J. Klacka and M. Kocifaj, Prog. Electromagn. Res. 109, 17 (2010). https://doi.org/10.2528/PIER10072708 , Google ScholarCrossref
- 20. E. Rosenkrantz and S. Arnon, Opt. Lett. 35, 1178 (2010). https://doi.org/10.1364/OL.35.001178 , Google ScholarCrossref
- 21. M. Kocifaj and J. Klacka, Opt. Lett. 37, 265 (2012). https://doi.org/10.1364/OL.37.000265 , Google ScholarCrossref
- 22. R. L. Heinisch, F. X. Bronold, and H. Fehske, Phys. Rev. Lett. 109, 243903 (2012). https://doi.org/10.1103/PhysRevLett.109.243903 , Google ScholarCrossref
- 23. S. Nie and S. R. Emory, Science 275, 1102 (1997). https://doi.org/10.1126/science.275.5303.1102 , Google ScholarCrossref, ISI
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.

