No Access Submitted: 19 January 2013 Accepted: 11 March 2013 Published Online: 02 April 2013
J. Math. Phys. 54, 042201 (2013); https://doi.org/10.1063/1.4798396
more...View Affiliations
View Contributors
  • Nilanjana Datta
  • Min-Hsiu Hsieh
  • Mark M. Wilde
  • Andreas Winter
We establish a theory of quantum-to-classical rate distortion coding. In this setting, a sender Alice has many copies of a quantum information source. Her goal is to transmit a classical description of the source, obtained by performing a measurement on it, to a receiver Bob, up to some specified level of distortion. We derive a single-letter formula for the minimum rate of classical communication needed for this task. We also evaluate this rate in the case in which Bob has some quantum side information about the source. Our results imply that, in general, Alice's best strategy is a non-classical one, in which she performs a collective measurement on successive outputs of the source.
We acknowledge useful discussions Patrick Hayden. M.M.W. acknowledges support from the Centre de Recherches Mathématiques at the University of Montreal. M.-H.H. received support from the Chancellor's postdoctoral research fellowship, University of Technology Sydney (UTS) and was also partly supported by the National Natural Science Foundation of China (Grant No. 61179030) and the Australian Research Council (Grant No. DP120103776). AW was supported by the Royal Society, the Philip Leverhulme Trust, EC integrated project QAP (contract IST-2005-15848), the STREPs QICS and QCS, and the ERC Advanced Grant “IRQUAT”.
  1. 1. R. Alicki and M. Fannes, “Continuity of quantum conditional information,” J. Phys. A 37(5), L55–L57 (2004). https://doi.org/10.1088/0305-4470/37/5/L01 , Google ScholarCrossref
  2. 2. H. Barnum, “Quantum rate-distortion coding,” Phys. Rev. A 62(4), 042309 (2000). https://doi.org/10.1103/PhysRevA.62.042309 , Google ScholarCrossref
  3. 3. T. Berger, Rate Distortion Theory: A Mathematical Basis for Data Compression, Information and System Sciences Series (Prentice Hall, 1971). Google Scholar
  4. 4. M. Berta, O. Fawzi, and S. Wehner, “Quantum to classical randomness extractors,” Lect. Notes Comput. Sci. 7417, 776–793 (2012). https://doi.org/10.1007/978-3-642-32009-5_45 , Google ScholarCrossref
  5. 5. X.-Y. Chen and W.-M. Wang, “Entanglement information rate distortion of a quantum Gaussian source,” IEEE Trans. Inf. Theory 54(2), 743–748 (2008). https://doi.org/10.1109/TIT.2007.913242 , Google ScholarCrossref
  6. 6. T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed. (Wiley-Interscience, 2005). Google ScholarCrossref
  7. 7. P. Cuff, “Communication requirements for generating correlated random variables,” in Proceedings of the 2008 International Symposium on Information Theory, Toronto, Ontario, Canada, July 2008 (Stanford Univ., Stanford, CA), pp. 1393–1397; https://doi.org/10.1109/ISIT.2008.4595216 , Google ScholarCrossref
    e-print arXiv:0805.0065. , Google Scholar
  8. 8. N. Datta, M.-H. Hsieh, and M. M. Wilde, “Quantum rate distortion, reverse Shannon theorems, and source-channel separation,” IEEE Trans. Inf. Theory 59, 615–630 (2013); https://doi.org/10.1109/TIT.2012.2215575 , Google ScholarCrossref
    e-print arXiv:1108.4940. , Google Scholar
  9. 9. I. Devetak and T. Berger, “Quantum rate-distortion theory for memoryless sources,” IEEE Trans. Inf. Theory 48(6), 1580–1589 (2002); https://doi.org/10.1109/TIT.2002.1003840 , Google ScholarCrossref
    e-print arXiv:quant-ph/0011085. , Google Scholar
  10. 10. I. Devetak and A. Winter, “Classical data compression with quantum side information,” Phys. Rev. A 68(4), 042301 (2003). https://doi.org/10.1103/PhysRevA.68.042301 , Google ScholarCrossref
  11. 11. V. Giovannetti, S. Guha, S. Lloyd, L. Maccone, J. H. Shapiro, and H. P. Yuen, “Classical capacity of the lossy bosonic channel: The exact solution,” Phys. Rev. Lett. 92(2), 027902 (2004). https://doi.org/10.1103/PhysRevLett.92.027902 , Google ScholarCrossref
  12. 12. A. S. Holevo, “The capacity of the quantum channel with general signal states,” IEEE Trans. Inf. Theory 44, 269–273 (1998). https://doi.org/10.1109/18.651037 , Google ScholarCrossref
  13. 13. Z. Luo and I. Devetak, “Channel simulation with quantum side information,” IEEE Trans. Inf. Theory 55(3), 1331–1342 (2009); https://doi.org/10.1109/TIT.2008.2011424 , Google ScholarCrossref
    e-print arXiv:quant-ph/0611008. , Google Scholar
  14. 14. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000). Google Scholar
  15. 15. B. Schumacher, “Quantum coding,” Phys. Rev. A 51(4), 2738–2747 (1995). https://doi.org/10.1103/PhysRevA.51.2738 , Google ScholarCrossref
  16. 16. B. Schumacher and M. A. Nielsen, “Quantum data processing and error correction,” Phys. Rev. A 54, 2629–2635 (1996). https://doi.org/10.1103/PhysRevA.54.2629 , Google ScholarCrossref
  17. 17. B. Schumacher and M. D. Westmoreland, “Sending classical information via noisy quantum channels,” Phys. Rev. A 56(1), 131–138 (1997). https://doi.org/10.1103/PhysRevA.56.131 , Google ScholarCrossref
  18. 18. C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J. 27, 379–423 (1948). Google ScholarCrossref
  19. 19. C. E. Shannon, “Coding theorems for a discrete source with a fidelity criterion,” IRE Int. Conv. Rec. 7, 142–163 (1959). Google Scholar
  20. 20. D. Slepian and J. K. Wolf, “Noiseless coding of correlated information sources,” IEEE Trans. Inf. Theory 19(4), 471–480 (1973). https://doi.org/10.1109/TIT.1973.1055037 , Google ScholarCrossref
  21. 21. M. M. Wilde, “From Classical to Quantum Shannon Theory,” preprint arXiv:1106.1445 (2011). Google Scholar
  22. 22. M. M. Wilde, P. Hayden, F. Buscemi, and M.-H. Hsieh, “The information-theoretic costs of simulating quantum measurements,” J. Phys. A: Math. Theor. 45(45), 453001 (2012); https://doi.org/10.1088/1751-8113/45/45/453001 , Google ScholarCrossref
    e-print arXiv:1206.4121. , Google Scholar
  23. 23. A. Winter, “Compression of sources of probability distributions and density operators,” preprint arXiv:quant-ph/0208131 (2002). Google Scholar
  24. 24. A. Winter, ““Extrinsic” and “intrinsic” data in quantum measurements: asymptotic convex decomposition of positive operator valued measures,” Commun. Math. Phys. 244(1), 157–185 (2004). https://doi.org/10.1007/s00220-003-0989-z , Google ScholarCrossref
  25. 25. A. Winter and R. Ahlswede, “Quantum rate-distortion theory,” (unpublished). Google Scholar
  26. 26. A. Wyner and J. Ziv, “The rate-distortion function for source coding with side information at the decoder,” IEEE Trans. Inf. Theory 22(1), 1–10 (1976). https://doi.org/10.1109/TIT.1976.1055508 , Google ScholarCrossref
  27. 27. We note that a similar perspective was used to justify the development of quantum-to-classical randomness extractors.4 , Google Scholar
  28. 28. A “classical strategy” here corresponds to a measurement in the eigenbasis of ρ, followed by classical post-processing. Google Scholar
  1. © 2013 American Institute of Physics.