No Access Submitted: 30 March 1998 Accepted: 29 May 1998 Published Online: 25 November 1998
J. Chem. Phys. 109, 3629 (1998); https://doi.org/10.1063/1.476960
more...View Contributors
  • James T. Kindt
  • John C. Tully
  • Martin Head-Gordon
  • Maria A. Gomez
To assess the importance of coupling to electron-hole pair (ehp) excitations for molecular sticking, scattering, and diffusion dynamics at metal surfaces, simulations of the CO/Cu(100) system were performed using the “molecular dynamics with electronic frictions” method. Over a range of incident translational energies, energy losses to ehp excitations produce a moderate increase in sticking probability and account for 5%–10% of initial translational energy in scattered molecules, significantly less than phonon losses. Vibrational excitation and deexcitation of scattered molecules, while remaining a minor pathway for energy flow, is strongly affected by the inclusion of ehp excitations. Finally, although equilibrium diffusion constants are unaffected by the inclusion of coupling to ehp, it causes a significant quenching of transient mobility following adsorption of translationally hot molecules.
  1. 1. W. L. Schaich, Surf. Sci. 49, 221 (1975). Google ScholarCrossref
  2. 2. A. Nourtier, J. Phys. (Paris) 38, 479 (1977). Google ScholarCrossref
  3. 3. J. K. No/rskovand B. I. Lundqvist, Surf. Sci. 89, 251 (1979). Google ScholarCrossref
  4. 4. J. W. Gadzukand H. Metiu, Phys. Rev. B 22, 2603 (1980). Google ScholarCrossref, ISI
  5. 5. R. Brakoand D. M. Newns, Solid State Commun. 33, 713 (1980); Google ScholarCrossref
    R. Brakoand D. M. Newns, J. Phys. C 14, 3065 (1981). , Google ScholarCrossref
  6. 6. K. Schönhammerand O. Gunnarsson, Phys. Rev. B 22, 1629 (1980); Google ScholarCrossref
    K. Schönhammerand O. Gunnarsson, Phys. Rev. B 27, 5113 (1983). , Google ScholarCrossref
  7. 7. K. M. Leung, G. Schon, P. Rudolph, and H. Metiu, J. Chem. Phys. 81, 3307 (1984). Google ScholarScitation
  8. 8. Z. Kirson, R. B. Gerber, A. Nitzan, and M. A. Ratner, Surf. Sci. 137, 527 (1984). Google ScholarCrossref, ISI
  9. 9. H. Kasaiand A. Okiji, Surf. Sci. Lett. 225, L33 (1990). Google ScholarCrossref
  10. 10. R. Baer, Y. Zeiri, and R. Kosloff, Phys. Rev. B 55, 10,952 (1997). Google ScholarCrossref
  11. 11. M. Head-Gordonand J. C. Tully, J. Chem. Phys. 103, 10,137 (1995). Google ScholarScitation
  12. 12. J. C. Tully, M. Gomez, and M. Head-Gordon, J. Vac. Sci. Technol. A 11, 1914 (1993). Google ScholarCrossref
  13. 13. C. Springer, M. Head-Gordon, and J. C. Tully, Surf. Sci. 320, L57 (1994); Google ScholarCrossref
    C. Springerand M. Head-Gordon, Chem. Phys. 205, 73 (1996). , Google ScholarCrossref
  14. 14. S. Anderssonand J. B. Pendry, Phys. Rev. Lett. 43, 363 (1979); Google ScholarCrossref, ISI
    M. Passler, A. Ignatiev, F. Jona, D. W. Jepsen, and P. M. Marcus, Phys. Rev. Lett. 43, 360 (1979). , Google ScholarCrossref, ISI
  15. 15. J. C. Tracy, J. Chem. Phys. 56, 2748 (1972). Google ScholarScitation, ISI
  16. 16. S. C. Park, J. M. Bowman, and D. A. Jelski, J. Chem. Phys. 104, 2457 (1996). Google ScholarScitation
    In particular, the frequency of the frustrated translational mode obtained by Park et al. is 32 cm−1. The frequency of 4 cm−1 for this mode reported in Ref. 12 is incorrect. , Google Scholar
  17. 17. J. C. Tully, G. H. Gilmer, and M. Shugard, J. Chem. Phys. 71, 1630 (1979). Google ScholarScitation, ISI
  18. 18. M. P. D’Evelyn, H.-P. Steinrück, and R. J. Madix, Surf. Sci. 180, 47 (1987). Google ScholarCrossref
  19. 19. J. K. Brownand A. C. Luntz, Chem. Phys. Lett. 204, 451 (1993). Google ScholarCrossref
  20. 20. L. A. DeLouise, Chem. Phys. Lett. 180, 149 (1991). Google ScholarCrossref
  21. 21. B. E. Haydenand D. C. Godfrey, J. Electron Spectrosc. Relat. Phenom. 45, 351 (1987). Google ScholarCrossref
  22. 22. J. Harrisand A. C. Luntz, J. Chem. Phys. 91, 642 (1989). Google Scholar
  23. 23. J. T. Kindt and J. C. Tully (unpublished). Google Scholar
  24. 24. C. T. Rettner, F. Fabre, J. Kimman, and D. J. Auerbach, Phys. Rev. Lett. 55, 1904 (1985). Google ScholarCrossref
  25. 25. M. Brandbyge, P. Hedegård, T. F. Heinz, J. A. Misewich, and D. M. Newns, Phys. Rev. B 52, 6042 (1995). Google ScholarCrossref, ISI
  26. 26. J. Misewich, P. A. Roland, and M. M. T. Loy, Surf. Sci. 171, 483 (1986). Google ScholarCrossref
  27. 27. Y. Liand G. Wahnström, Phys. Rev. B 46, 14,528 (1992). Google ScholarCrossref
  28. 28. M. J. Puskaand R. M. Nieminen, Phys. Rev. B 27, 6121 (1983). Google ScholarCrossref
  29. 29. F. Hofmannand J. P. Toennies, Chem. Rev. 96, 1307 (1996). Google ScholarCrossref, ISI
  30. 30. R. Viswanathan, D. R. Burgess, Jr., P. C. Stair, and E. Weitz, J. Vac. Sci. Technol. 20, 605 (1982). Google ScholarCrossref
  31. 31. J. V. Nekrylovaand I. Harrison, J. Chem. Phys. 101, 1730 (1994). Google ScholarScitation
  32. 32. B. C. Stipe, M. A. Rezaei, and W. Ho, J. Chem. Phys. 107, 6443 (1997). Google ScholarScitation, ISI
  33. 33. S. P. Lewisand A. M. Rappe, Phys. Rev. Lett. 77, 5241 (1996). Google ScholarCrossref
  34. 34. K. D. Dobbsand D. J. Doren, J. Chem. Phys. 97, 3722 (1992). Google ScholarScitation, ISI
  35. 35. C. Engdahland G. Wahnström, Surf. Sci. 312, 429 (1994); Google ScholarCrossref
    G. Wahnström, A. B. Lee, and J. Strömquist, J. Chem. Phys. 105, 326 (1996). , Google ScholarScitation
  1. © 1998 American Institute of Physics.