No Access Submitted: 11 July 2012 Accepted: 11 September 2012 Published Online: 01 October 2012
J. Chem. Phys. 137, 134901 (2012); https://doi.org/10.1063/1.4754870
more...View Affiliations
View Contributors
  • Daniel J. Beltran-Villegas
  • Ray M. Sehgal
  • Dimitrios Maroudas
  • David M. Ford
  • Michael A. Bevan
The crystallization dynamics of a colloidal cluster is modeled using a low-dimensional Smoluchowski equation. Diffusion mapping shows that two order parameters are required to describe the dynamics. Using order parameters as metrics for condensation and crystallinity, free energy, and diffusivity landscapes are extracted from Brownian dynamics simulations using Bayesian inference. Free energy landscapes are validated against Monte Carlo simulations, and mean first-passage times are validated against dynamic simulations. The resulting model enables a low-dimensional description of colloidal crystallization dynamics.
M.A.B. and D.M.F. acknowledge financial support by the National Science Foundation through a Cyber Enabled Discovery and Innovation Grant No. CMMI-0835549. D.M. acknowledges support by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering (DE-FG02-07ER46407).
  1. 1. A. P. Gast and W. B. Russel, Phys. Today 51(12), 24 (1998). https://doi.org/10.1063/1.882495 , Google ScholarCrossref
  2. 2. K. A. Arpin, A. Mihi, H. T. Johnson, A. J. Baca, J. A. Rogers, J. A. Lewis, and P. V. Braun, Adv. Mater. 22, 1084 (2010). https://doi.org/10.1002/adma.200904096 , Google ScholarCrossref
  3. 3. S. Auer and D. Frenkel, Annu. Rev. Phys. Chem. 55, 333 (2004). https://doi.org/10.1146/annurev.physchem.55.091602.094402 , Google ScholarCrossref, ISI
  4. 4. H. Ma and M. Gruebele, J. Comput. Chem. 27, 125 (2006). https://doi.org/10.1002/jcc.20311 , Google ScholarCrossref, ISI
  5. 5. J. R. Savage, D. W. Blair, A. J. Levine, R. A. Guyer, and A. D. Dinsmore, Science 314, 795 (2006). https://doi.org/10.1126/science.1128649 , Google ScholarCrossref
  6. 6. J. R. Savage and A. D. Dinsmore, Phys. Rev. Lett. 102, 198302 (2009). https://doi.org/10.1103/PhysRevLett.102.198302 , Google ScholarCrossref
  7. 7. J. P. K. Doye, M. A. Miller, and D. J. Wales, J. Chem. Phys. 110, 6896 (1999). https://doi.org/10.1063/1.478595 , Google ScholarScitation, ISI
  8. 8. Z. H. Li, A. W. Jasper, and D. G. Truhlar, J. Am. Chem. Soc. 129, 14899 (2007). https://doi.org/10.1021/ja073129i , Google ScholarCrossref, ISI
  9. 9. V. N. Manoharan, M. T. Elsesser, and D. J. Pine, Science 301, 483 (2003). https://doi.org/10.1126/science.1086189 , Google ScholarCrossref, ISI
  10. 10. G. Meng, N. Arkus, M. P. Brenner, and V. N. Manoharan, Science 327, 560 (2010). https://doi.org/10.1126/science.1181263 , Google ScholarCrossref
  11. 11. R. S. Berry, C. R. Phys. 3, 319 (2002). https://doi.org/10.1016/S1631-0705(02)01324-5 , Google ScholarCrossref
  12. 12. D. J. Beltran-Villegas and M. A. Bevan, Soft Matter 7, 3280 (2011). https://doi.org/10.1039/c0sm01526a , Google ScholarCrossref
  13. 13. G. E. Fernandes, D. J. Beltran-Villegas, and M. A. Bevan, Langmuir 24, 10776 (2008). https://doi.org/10.1021/la802025d , Google ScholarCrossref
  14. 14. H.-J. Wu, T. O. Pangburn, R. E. Beckham, and M. A. Bevan, Langmuir 21, 9879 (2005). https://doi.org/10.1021/la050671g , Google ScholarCrossref
  15. 15. T. O. Pangburn and M. A. Bevan, J. Chem. Phys. 124, 054712 (2006). https://doi.org/10.1063/1.2162536 , Google ScholarScitation, ISI
  16. 16. G. E. Fernandes, D. J. Beltran-Villegas, and M. A. Bevan, J. Chem. Phys. 131, 134705 (2009). https://doi.org/10.1063/1.3243686 , Google ScholarScitation, ISI
  17. 17. D. J. Beltran-Villegas, R. M. Sehgal, D. Maroudas, D. M. Ford, and M. A. Bevan, J. Chem. Phys. 135, 154506 (2011). https://doi.org/10.1063/1.3652967 , Google ScholarScitation
  18. 18. R. B. Best and G. Hummer, Phys. Rev. Lett. 96, 228104 (2006). https://doi.org/10.1103/PhysRevLett.96.228104 , Google ScholarCrossref, ISI
  19. 19. G. Hummer and I. G. Kevrekidis, J. Chem. Phys. 118, 10762 (2003). https://doi.org/10.1063/1.1574777 , Google ScholarScitation, ISI
  20. 20. S. Yang, J. N. Onuchic, A. E. García, and H. Levine, J. Mol. Biol. 372, 756 (2007). https://doi.org/10.1016/j.jmb.2007.07.010 , Google ScholarCrossref
  21. 21. M. A. Amat, M. Arienti, V. A. Fonoberov, I. G. Kevrekidis, and D. Maroudas, J. Chem. Phys. 129, 184106 (2008). https://doi.org/10.1063/1.3006427 , Google ScholarScitation
  22. 22. D. I. Kopelevich, A. Z. Panagiotopoulos, and I. G. Kevrekidis, J. Chem. Phys. 122, 044908 (2005). https://doi.org/10.1063/1.1839174 , Google ScholarScitation, ISI
  23. 23. J. Wedekind and D. Reguera, J. Phys. Chem. B 112, 11060 (2008). https://doi.org/10.1021/jp804014h , Google ScholarCrossref
  24. 24. G. Chkonia, J. Wolk, R. Strey, J. Wedekind, and D. Reguera, J. Chem. Phys. 130, 064505 (2009). https://doi.org/10.1063/1.3072794 , Google ScholarScitation, ISI
  25. 25. R. Erban, T. A. Frewen, X. Wang, T. C. Elston, R. Coifman, B. Nadler, and I. G. Kevrekidis, J. Chem. Phys. 126, 155103 (2007). https://doi.org/10.1063/1.2718529 , Google ScholarScitation
  26. 26. C. W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences (Springer, Berlin, 2009). Google Scholar
  27. 27. B. Nadler, S. Lafon, R. R. Coifman, and I. G. Kevrekidis, Appl. Comput. Harmon. Anal. 21, 113 (2006). https://doi.org/10.1016/j.acha.2005.07.004 , Google ScholarCrossref
  28. 28. R. R. Coifman, I. G. Kevrekidis, S. Lafon, M. Maggioni, and B. Nadler, Multiscale Model. Simul. 7, 842 (2008). https://doi.org/10.1137/070696325 , Google ScholarCrossref
  29. 29. A. L. Ferguson, A. Z. Panagiotopoulos, P. G. Debenedetti, and I. G. Kevrekidis, Proc. Natl. Acad. Sci. U.S.A. 107, 13597 (2010). https://doi.org/10.1073/pnas.1003293107 , Google ScholarCrossref
  30. 30. G. Hummer, New J. Phys. 7, 34 (2005). https://doi.org/10.1088/1367-2630/7/1/034 , Google ScholarCrossref, ISI
  31. 31. P. Banushkina and M. Meuwly, J. Chem. Phys. 127, 135101 (2007). https://doi.org/10.1063/1.2775444 , Google ScholarScitation
  32. 32. J. Mittal, T. M. Truskett, J. R. Errington, and G. Hummer, Phys. Rev. Lett. 100, 145901 (2008). https://doi.org/10.1103/PhysRevLett.100.145901 , Google ScholarCrossref
  33. 33. J. Mittal and G. Hummer, J. Chem. Phys. 137, 034110 (2012). https://doi.org/10.1063/1.4732515 , Google ScholarScitation
  34. 34. H. Y. Wang, C. S. Peskin, and T. C. Elston, J. Theor. Biol. 221, 491 (2003). https://doi.org/10.1006/jtbi.2003.3200 , Google ScholarCrossref
  35. 35. P. R. ten Wolde, M. J. Ruiz-Montero, and D. Frenkel, J. Chem. Phys. 104, 9932 (1996). https://doi.org/10.1063/1.471721 , Google ScholarScitation
  36. 36. H. Risken, The Fokker-Planck Equation: Methods of Solution and Applications (Springer, Berlin, 1996). Google ScholarCrossref
  37. 37. G. R. Bowman, K. A. Beauchamp, G. Boxer, and V. S. Pande, J. Chem. Phys. 131, 124101 (2009). https://doi.org/10.1063/1.3216567 , Google ScholarScitation, ISI
  38. 38. P. G. Bolhuis, C. Dellago, and D. Chandler, Proc. Natl. Acad. Sci. U.S.A. 97, 5877 (2000). https://doi.org/10.1073/pnas.100127697 , Google ScholarCrossref, ISI
  39. 39. A. S. Keys, C. R. Iacovella, and S. C. Glotzer, J. Comput. Phys. 230, 6438 (2011). https://doi.org/10.1016/j.jcp.2011.04.017 , Google ScholarCrossref
  1. © 2012 American Institute of Physics.