Abstract
The aim of the paper is to propose geometric descriptions of multipartite entangled states using algebraic geometry. In the context of this paper, geometric means each stratum of the Hilbert space, corresponding to an entangled state, is an open subset of an algebraic variety built by classical geometric constructions (tangent lines, secant lines) from the set of separable states. In this setting, we describe well-known classifications of multipartite entanglement such as 2 × 2 × (n + 1), for n ⩾ 1, quantum systems and a new description with the 2 × 3 × 3 quantum system. Our results complete the approach of Miyake and make stronger connections with recent work of algebraic geometers. Moreover, for the quantum systems detailed in this paper, we propose an algorithm, based on the classical theory of invariants, to decide to which subvariety of the Hilbert space a given state belongs.
ACKNOWLEDGMENTS
This paper is partially supported by the ANR project PhysComb, ANR-08-BLAN-0243-04.
REFERENCES
- 1. L. Borsten, D. Dahanayake, M. J. Duff, A. Marrani, and W. Rubens, “Four-qubit entanglement classification from string theory,” Phys. Rev. Lett. 105, 100507 (2010). https://doi.org/10.1103/PhysRevLett.105.100507 , Google ScholarCrossref
- 2. D. C. Brody and L. P. Hughston, “Geometric quantum mechanics,” J. Geom. Phys. 38, 19–53 (2001). https://doi.org/10.1016/S0393-0440(00)00052-8 , Google ScholarCrossref
- 3. D. C. Brody, A. C. T. Gustavsson, and L. P. Hughston, “Entanglement of three-qubit geometry,” J. Phys. Conf. Ser. 67, 012044 (2007). https://doi.org/10.1088/1742-6596/67/1/012044 , Google ScholarCrossref
- 4. E. Briand, J.-G. Luque, J.-Y. Thibon, and F. Verstraete, “The moduli space of three qutrit states,” J. Math. Phys. 45, 4855 (2004). https://doi.org/10.1063/1.1809255 , Google ScholarScitation
- 5. J.-L. Brylinski, “Algebraic measures of entanglement,” Mathematics of Quantum Computation, Computational Mathematics Series (Chapman and Hall, Boca Raton, FL, 2002), pp. 3–23. Google ScholarCrossref
- 6. J.-L. Brylinski and R. Brylinski, “Invariant polynomial functions on k qudits,” Mathematics of Quantum Computation, Computational Mathematics Series (Chapman and Hall, Boca Raton, FL, 2002), pp. 277–286. Google ScholarCrossref
- 7. J. Buczyński and J. M. Landsberg, “On the third secant variety,” e-print arXiv:1111.7005v1. Google Scholar
- 8. M. V. Catalisano, A. Geramita, and A. Gimigliano, “Secant varieties (n-times) are not defective for n ⩾ 5,” J. Algeb. Geom. 20, 295–327 (2011). https://doi.org/10.1090/S1056-3911-10-00537-0 , Google ScholarCrossref
- 9. M. V. Catalisano, A. Geramita, and A. Gimigliano, “On the ideals of secant varieties to certain rational varieties,” J. Algebra 319(5), 1913–1931 (2008). https://doi.org/10.1016/j.jalgebra.2007.01.045 , Google ScholarCrossref
- 10. L. Chen, Y.-X. Chen, and Y.-X. Mei, “Classification of multipartite entanglement containing infinitely many kinds of states,” Phys. Rev. A 74, 052331 (2006). https://doi.org/10.1103/PhysRevA.74.052331 , Google ScholarCrossref
- 11. J. L. Coolidge, A Treatise on the Circle and the Sphere (Clarendon, 1916). Google Scholar
- 12. W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A 62, 062314 (2000). https://doi.org/10.1103/PhysRevA.62.062314 , Google ScholarCrossref
- 13. W. Fulton and J. Harris, Representation Theory, Graduate Text in Mathematics Vol. 129, (Springer, 1991). Google Scholar
- 14. I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, Resultants and Multidimensional Determinants (Birkhäuser, 1994). Google ScholarCrossref
- 15. J. Harris, Algebraic Geometry: A First Course, Graduate Texts in Mathematics Vol. 133 (Springer, 1992). Google ScholarCrossref
- 16. H. Heydari, “Geometrical structure of entangled states and the secant variety,” Quantum Inf. Process. 7(1), 3–32 (2008). https://doi.org/10.1007/s11128-007-0071-4 , Google ScholarCrossref
- 17. F. L. Hitchcock, “A new method in the theory of quantics,” J. Math. Phys. 8, 81–105 (1929). Google ScholarCrossref
- 18. F. L. Hitchcock, “The expression of a tensor or polyadic as a sum of products,” J. Math. Phys. 6, 164–189 (1927). Google ScholarCrossref
- 19. F. L. Hitchcock, “Multiple invariants and generalized rank of a p-way matrix or tensor,” J. Math. Phys. 7, 40–79 (1927). Google Scholar
- 20. F. Holweck, “Singularities of the duals of Grassmannians,” J. Algebra 337, 369–384 (2011). https://doi.org/10.1016/j.jalgebra.2011.04.023 , Google ScholarCrossref
- 21. T. Ivey and J. M. Landsberg, Cartan for Beginners: Differential Geometry Via Moving Frames and Exterior Differential Systems, Graduate Studies in Mathematics Vol. 61 (American Mathematical Society, 2003). Google ScholarCrossref
- 22. C. Jordan, “Réduction d'un réseau de formes quadratiques ou bilinéaires (deuxième partie),” Jounal de mathématiqes pures et appliquées 6ème série 3, 5–51 (1907). Google Scholar
- 23. V. G. Kac, “Some remarks on nilpotent orbits,” J. Algebra 64(1), 190–213 (1980). https://doi.org/10.1016/0021-8693(80)90141-6 , Google ScholarCrossref
- 24. N. Katz, “Pinceaux de Lefschetz, Théorème d'existence,” SGA 7, Lect. Notes Math. 340, 212–253 (1973). https://doi.org/10.1007/BFb0060513 , Google ScholarCrossref
- 25. A. A. Klyachko, “Coherent states, entanglement, and geometric invariant theory,” e-print arXiv:quant-ph/0206012. Google Scholar
- 26. F. Knop and G. Menzel, “Duale Varietäten von Fahnenvarietäten,” Comment. Math. Helv. 62, 38–61 (1987). https://doi.org/10.1007/BF02564437 , Google ScholarCrossref
- 27. L. Lamata, J. León, D. Salgado, and E. Solano, “Inductive entanglement classification of four qubits under stochastic local operations and classical communication,” Phys. Rev. A. 72, 022318 (2007). https://doi.org/10.1103/PhysRevA.75.022318 , Google ScholarCrossref
- 28. J. M. Landsberg and L. Manivel, “On the ideals of secant varietes of Segre varieties,” Found. Comput. Math. 4(4), 397–422 (2004). https://doi.org/10.1007/s10208-003-0115-9 , Google ScholarCrossref
- 29. A. Lascoux, Symmetric Functions and Combinatorial Operators on Polynomials, Conference Board of the Mathematical Sciences Vol. 99 (American Mathematical Society, 2001). Google Scholar
- 30. A. Lascoux and J.-Y. Thibon, “Vertex operators and the class algebras of symmetric groups,” J. Mathematical Sciences 121, 2380–2392 (2004). https://doi.org/10.1023/B:JOTH.0000024619.77778.3d , Google ScholarCrossref
- 31. C. Le Paige, “Sur la théorie des formes binaires à plusieurs séeries de variables,” Bull. Acad. R. Sci. Belg. 2(3), 40–53 (1881). Google Scholar
- 32. D. E. Littlewood, A University Algebra (Heinemann, 1958). Google Scholar
- 33. J.-G. Luque and J. Y. Thibon, “The polynomial invariants of four qubits,” Phys. Rev. A 67, 042303 (2003). https://doi.org/10.1103/PhysRevA.67.042303 , Google ScholarCrossref
- 34. I. G. Macdonald, Symmetric Function and Hall Polynomial, 2nd ed. (Oxford University Press, 1995). Google Scholar
- 35. P. A. Macmahon, Combinatorial Analysis (Cambridge University Press, 1915). Google Scholar
- 36. A. Miyake, “Classification of multipartite entangled states by multidimensional determinants,” Phys. Rev. A 67, 012108 (2003). https://doi.org/10.1103/PhysRevA.67.012108 , Google ScholarCrossref
- 37. A. Miyake, “Multipartite entanglement under stochastic local operations and classical communication,” Int. J. Quantum Inf. 2, 65–77 (2004). https://doi.org/10.1142/S0219749904000080 , Google ScholarCrossref
- 38. A. Miyake and F. Verstraete, “Multipartite entanglement in 2 × 2 × n quantum systems,” Phys. Rev. A 69, 012101 (2004). https://doi.org/10.1103/PhysRevA.69.012101 , Google ScholarCrossref
- 39. A. G. Nurmiev, “Orbits and invariants of cubic matrices of order three,” Mat. Sb. 191(5), 101–108 (2000). https://doi.org/10.4213/sm478 , Google ScholarCrossref
- 40. P. G. Pavenov, “Tensor products with finitely many orbits,” Russ. Math. Surveys 53, 635–636 (1998). https://doi.org/10.1070/RM1998v053n03ABEH000052 , Google ScholarCrossref
- 41. W. Saddler, “Triple binary forms, the complete system for a single (1, 1, 1) form with its geometrical interpretation,” Proc. Cambridge Philos. Soc. 22, 688–693 (1925). https://doi.org/10.1017/S0305004100009567 , Google ScholarCrossref
- 42. E. Schwartz, “Ueber binäre trilineare Formen,” Math. Z. 12, 18–35 (1922). https://doi.org/10.1007/BF01482067 , Google ScholarCrossref
- 43. N. P. Sokolov, “Spatial matrices and their applications,” Gosudarstv. Izdat. Fiz.-Mat. Lit. (1960) (in Russian). Google Scholar
- 44. E. A. Tevelev, “Projectively dual varieties,” J. Math. Sci. 117(6), 4585–4732 (2003). https://doi.org/10.1023/A:1025366207448 , Google ScholarCrossref
- 45. R. M. Thrall and J. H. Chanler, “Ternary trilinear forms in the field of complex numbers,” Duke Math. J. 4, 678–690 (1938). https://doi.org/10.1215/S0012-7094-38-00459-4 , Google ScholarCrossref
- 46. R. M. Thrall, “On projective equivalence of trilinear forms,” Ann. Math. 42, 469–485 (1941). https://doi.org/10.2307/1968912 , Google ScholarCrossref
- 47. F. Verstraete, F. Dehaene, B. De Moor, and H. Verschelde, “Four qubits can be entangled in nine different ways,” Phys. Rev. A 65, 052112 (2002). https://doi.org/10.1103/PhysRevA.65.052112 , Google ScholarCrossref
- 48. È. B. Vinberg, “The Weyl group of a graded Lie algebra,” Izv. Akad. Nauk SSSR, Ser. Mat. 10(3), 463 (1976). https://doi.org/10.1070/IM1976v010n03ABEH001711 , Google ScholarCrossref
- 49. È. B. Vinberg, “Classification of homogeneous nilpotent elements of a semisimple graded Lie algebra,” Trudy Sem. Vektor. Tenzor. Anal. 19, 155–177 (1979). Google Scholar
- 50. J. Weyman and A. Zelevinsky, “Singularities of hyperdeterminants,” Ann. Inst. Fourier 46, 591–644 (1996). https://doi.org/10.5802/aif.1526 , Google ScholarCrossref
- 51. F. Zak, Tangents and Secants of Algebraic Varieties, AMS Translations of Mathematical Monographs Vol. 127 (American Mathematical Society, 1993). Google Scholar
- © 2012 American Institute of Physics.
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.

