Published Online: 03 October 2012
Accepted: August 2012
Journal of Mathematical Physics 53, 102203 (2012); https://doi.org/10.1063/1.4753989
more...View Affiliations
The aim of the paper is to propose geometric descriptions of multipartite entangled states using algebraic geometry. In the context of this paper, geometric means each stratum of the Hilbert space, corresponding to an entangled state, is an open subset of an algebraic variety built by classical geometric constructions (tangent lines, secant lines) from the set of separable states. In this setting, we describe well-known classifications of multipartite entanglement such as 2 × 2 × (n + 1), for n ⩾ 1, quantum systems and a new description with the 2 × 3 × 3 quantum system. Our results complete the approach of Miyake and make stronger connections with recent work of algebraic geometers. Moreover, for the quantum systems detailed in this paper, we propose an algorithm, based on the classical theory of invariants, to decide to which subvariety of the Hilbert space a given state belongs.
This paper is partially supported by the ANR project PhysComb, ANR-08-BLAN-0243-04.
  1. 1. L. Borsten, D. Dahanayake, M. J. Duff, A. Marrani, and W. Rubens, “Four-qubit entanglement classification from string theory,” Phys. Rev. Lett. 105, 100507 (2010). https://doi.org/10.1103/PhysRevLett.105.100507 , Google ScholarCrossref
  2. 2. D. C. Brody and L. P. Hughston, “Geometric quantum mechanics,” J. Geom. Phys. 38, 19–53 (2001). https://doi.org/10.1016/S0393-0440(00)00052-8 , Google ScholarCrossref
  3. 3. D. C. Brody, A. C. T. Gustavsson, and L. P. Hughston, “Entanglement of three-qubit geometry,” J. Phys. Conf. Ser. 67, 012044 (2007). https://doi.org/10.1088/1742-6596/67/1/012044 , Google ScholarCrossref
  4. 4. E. Briand, J.-G. Luque, J.-Y. Thibon, and F. Verstraete, “The moduli space of three qutrit states,” J. Math. Phys. 45, 4855 (2004). https://doi.org/10.1063/1.1809255 , Google ScholarScitation
  5. 5. J.-L. Brylinski, “Algebraic measures of entanglement,” Mathematics of Quantum Computation, Computational Mathematics Series (Chapman and Hall, Boca Raton, FL, 2002), pp. 3–23. Google ScholarCrossref
  6. 6. J.-L. Brylinski and R. Brylinski, “Invariant polynomial functions on k qudits,” Mathematics of Quantum Computation, Computational Mathematics Series (Chapman and Hall, Boca Raton, FL, 2002), pp. 277–286. Google ScholarCrossref
  7. 7. J. Buczyński and J. M. Landsberg, “On the third secant variety,” e-print arXiv:1111.7005v1. Google Scholar
  8. 8. M. V. Catalisano, A. Geramita, and A. Gimigliano, “Secant varieties P1××P1 (n-times) are not defective for n ⩾ 5,” J. Algeb. Geom. 20, 295–327 (2011). https://doi.org/10.1090/S1056-3911-10-00537-0 , Google ScholarCrossref
  9. 9. M. V. Catalisano, A. Geramita, and A. Gimigliano, “On the ideals of secant varieties to certain rational varieties,” J. Algebra 319(5), 1913–1931 (2008). https://doi.org/10.1016/j.jalgebra.2007.01.045 , Google ScholarCrossref
  10. 10. L. Chen, Y.-X. Chen, and Y.-X. Mei, “Classification of multipartite entanglement containing infinitely many kinds of states,” Phys. Rev. A 74, 052331 (2006). https://doi.org/10.1103/PhysRevA.74.052331 , Google ScholarCrossref
  11. 11. J. L. Coolidge, A Treatise on the Circle and the Sphere (Clarendon, 1916). Google Scholar
  12. 12. W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A 62, 062314 (2000). https://doi.org/10.1103/PhysRevA.62.062314 , Google ScholarCrossref
  13. 13. W. Fulton and J. Harris, Representation Theory, Graduate Text in Mathematics Vol. 129, (Springer, 1991). Google Scholar
  14. 14. I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, Resultants and Multidimensional Determinants (Birkhäuser, 1994). Google ScholarCrossref
  15. 15. J. Harris, Algebraic Geometry: A First Course, Graduate Texts in Mathematics Vol. 133 (Springer, 1992). Google ScholarCrossref
  16. 16. H. Heydari, “Geometrical structure of entangled states and the secant variety,” Quantum Inf. Process. 7(1), 3–32 (2008). https://doi.org/10.1007/s11128-007-0071-4 , Google ScholarCrossref
  17. 17. F. L. Hitchcock, “A new method in the theory of quantics,” J. Math. Phys. 8, 81–105 (1929). Google ScholarCrossref
  18. 18. F. L. Hitchcock, “The expression of a tensor or polyadic as a sum of products,” J. Math. Phys. 6, 164–189 (1927). Google ScholarCrossref
  19. 19. F. L. Hitchcock, “Multiple invariants and generalized rank of a p-way matrix or tensor,” J. Math. Phys. 7, 40–79 (1927). Google Scholar
  20. 20. F. Holweck, “Singularities of the duals of Grassmannians,” J. Algebra 337, 369–384 (2011). https://doi.org/10.1016/j.jalgebra.2011.04.023 , Google ScholarCrossref
  21. 21. T. Ivey and J. M. Landsberg, Cartan for Beginners: Differential Geometry Via Moving Frames and Exterior Differential Systems, Graduate Studies in Mathematics Vol. 61 (American Mathematical Society, 2003). Google ScholarCrossref
  22. 22. C. Jordan, “Réduction d'un réseau de formes quadratiques ou bilinéaires (deuxième partie),” Jounal de mathématiqes pures et appliquées 6ème série 3, 5–51 (1907). Google Scholar
  23. 23. V. G. Kac, “Some remarks on nilpotent orbits,” J. Algebra 64(1), 190–213 (1980). https://doi.org/10.1016/0021-8693(80)90141-6 , Google ScholarCrossref
  24. 24. N. Katz, “Pinceaux de Lefschetz, Théorème d'existence,” SGA 7, Lect. Notes Math. 340, 212–253 (1973). https://doi.org/10.1007/BFb0060513 , Google ScholarCrossref
  25. 25. A. A. Klyachko, “Coherent states, entanglement, and geometric invariant theory,” e-print arXiv:quant-ph/0206012. Google Scholar
  26. 26. F. Knop and G. Menzel, “Duale Varietäten von Fahnenvarietäten,” Comment. Math. Helv. 62, 38–61 (1987). https://doi.org/10.1007/BF02564437 , Google ScholarCrossref
  27. 27. L. Lamata, J. León, D. Salgado, and E. Solano, “Inductive entanglement classification of four qubits under stochastic local operations and classical communication,” Phys. Rev. A. 72, 022318 (2007). https://doi.org/10.1103/PhysRevA.75.022318 , Google ScholarCrossref
  28. 28. J. M. Landsberg and L. Manivel, “On the ideals of secant varietes of Segre varieties,” Found. Comput. Math. 4(4), 397–422 (2004). https://doi.org/10.1007/s10208-003-0115-9 , Google ScholarCrossref
  29. 29. A. Lascoux, Symmetric Functions and Combinatorial Operators on Polynomials, Conference Board of the Mathematical Sciences Vol. 99 (American Mathematical Society, 2001). Google Scholar
  30. 30. A. Lascoux and J.-Y. Thibon, “Vertex operators and the class algebras of symmetric groups,” J. Mathematical Sciences 121, 2380–2392 (2004). https://doi.org/10.1023/B:JOTH.0000024619.77778.3d , Google ScholarCrossref
  31. 31. C. Le Paige, “Sur la théorie des formes binaires à plusieurs séeries de variables,” Bull. Acad. R. Sci. Belg. 2(3), 40–53 (1881). Google Scholar
  32. 32. D. E. Littlewood, A University Algebra (Heinemann, 1958). Google Scholar
  33. 33. J.-G. Luque and J. Y. Thibon, “The polynomial invariants of four qubits,” Phys. Rev. A 67, 042303 (2003). https://doi.org/10.1103/PhysRevA.67.042303 , Google ScholarCrossref
  34. 34. I. G. Macdonald, Symmetric Function and Hall Polynomial, 2nd ed. (Oxford University Press, 1995). Google Scholar
  35. 35. P. A. Macmahon, Combinatorial Analysis (Cambridge University Press, 1915). Google Scholar
  36. 36. A. Miyake, “Classification of multipartite entangled states by multidimensional determinants,” Phys. Rev. A 67, 012108 (2003). https://doi.org/10.1103/PhysRevA.67.012108 , Google ScholarCrossref
  37. 37. A. Miyake, “Multipartite entanglement under stochastic local operations and classical communication,” Int. J. Quantum Inf. 2, 65–77 (2004). https://doi.org/10.1142/S0219749904000080 , Google ScholarCrossref
  38. 38. A. Miyake and F. Verstraete, “Multipartite entanglement in 2 × 2 × n quantum systems,” Phys. Rev. A 69, 012101 (2004). https://doi.org/10.1103/PhysRevA.69.012101 , Google ScholarCrossref
  39. 39. A. G. Nurmiev, “Orbits and invariants of cubic matrices of order three,” Mat. Sb. 191(5), 101–108 (2000). https://doi.org/10.4213/sm478 , Google ScholarCrossref
  40. 40. P. G. Pavenov, “Tensor products with finitely many orbits,” Russ. Math. Surveys 53, 635–636 (1998). https://doi.org/10.1070/RM1998v053n03ABEH000052 , Google ScholarCrossref
  41. 41. W. Saddler, “Triple binary forms, the complete system for a single (1, 1, 1) form with its geometrical interpretation,” Proc. Cambridge Philos. Soc. 22, 688–693 (1925). https://doi.org/10.1017/S0305004100009567 , Google ScholarCrossref
  42. 42. E. Schwartz, “Ueber binäre trilineare Formen,” Math. Z. 12, 18–35 (1922). https://doi.org/10.1007/BF01482067 , Google ScholarCrossref
  43. 43. N. P. Sokolov, “Spatial matrices and their applications,” Gosudarstv. Izdat. Fiz.-Mat. Lit. (1960) (in Russian). Google Scholar
  44. 44. E. A. Tevelev, “Projectively dual varieties,” J. Math. Sci. 117(6), 4585–4732 (2003). https://doi.org/10.1023/A:1025366207448 , Google ScholarCrossref
  45. 45. R. M. Thrall and J. H. Chanler, “Ternary trilinear forms in the field of complex numbers,” Duke Math. J. 4, 678–690 (1938). https://doi.org/10.1215/S0012-7094-38-00459-4 , Google ScholarCrossref
  46. 46. R. M. Thrall, “On projective equivalence of trilinear forms,” Ann. Math. 42, 469–485 (1941). https://doi.org/10.2307/1968912 , Google ScholarCrossref
  47. 47. F. Verstraete, F. Dehaene, B. De Moor, and H. Verschelde, “Four qubits can be entangled in nine different ways,” Phys. Rev. A 65, 052112 (2002). https://doi.org/10.1103/PhysRevA.65.052112 , Google ScholarCrossref
  48. 48. È. B. Vinberg, “The Weyl group of a graded Lie algebra,” Izv. Akad. Nauk SSSR, Ser. Mat. 10(3), 463 (1976). https://doi.org/10.1070/IM1976v010n03ABEH001711 , Google ScholarCrossref
  49. 49. È. B. Vinberg, “Classification of homogeneous nilpotent elements of a semisimple graded Lie algebra,” Trudy Sem. Vektor. Tenzor. Anal. 19, 155–177 (1979). Google Scholar
  50. 50. J. Weyman and A. Zelevinsky, “Singularities of hyperdeterminants,” Ann. Inst. Fourier 46, 591–644 (1996). https://doi.org/10.5802/aif.1526 , Google ScholarCrossref
  51. 51. F. Zak, Tangents and Secants of Algebraic Varieties, AMS Translations of Mathematical Monographs Vol. 127 (American Mathematical Society, 1993). Google Scholar
  52. © 2012 American Institute of Physics.