No Access Submitted: 20 June 2012 Accepted: 09 August 2012 Published Online: 18 September 2012
Journal of Applied Physics 112, 064505 (2012); https://doi.org/10.1063/1.4752399
more...View Affiliations
View Contributors
  • J. Ma
  • J. Yi
  • D. Q. Zhao
  • M. X. Pan
  • W. H. Wang
Bulk metallic glasses have excellent thermoforming ability in their wide supercooled liquid region. We show that large-size metallic glass grating (∼8 × 8 mm2) with fine periodicity and ultra smooth surface feature can be readily fabricated by hot embossing. The method for fabrication of gratings is proved to be much cheaper, and requires low pressure and short time (less than 30 s). The metallic glass gratings exhibit comparable optical properties such as rainbow-like spectrum when shone by fluorescent lamp light.
The financial support of the MOST 973 of China (Grant Nos. 2010CB731603 and 2011CB012806) and NSF of China (Grant Nos. 50890171, 5092109,1 and 51171204), and experimental assistance from the Laboratory of Microfabrication, and Technology Department of Institute of Physics, CAS, are appreciated.
  1. 1. A. Inoue, N. Nishiyama, and H. Kimura, Mater. Trans. JIM 38, 179 (1997). Google ScholarCrossref, ISI
  2. 2. W. H. Wang, Prog. Mater. Sci. 57, 487 (2012). https://doi.org/10.1016/j.pmatsci.2011.07.001 , Google ScholarCrossref, ISI
  3. 3. G. Kumar, H. X. Tang, and J. Schroers, Nature 457, 868 (2009). https://doi.org/10.1038/nature07718 , Google ScholarCrossref, ISI
  4. 4. W. H. Wang, Adv. Mater. 21, 4524 (2009); https://doi.org/10.1002/adma.200901053 , Google ScholarCrossref, ISI
    B. Zhang, D. Q. Zhao, W. H. Wang, and A. L. Greer, Phys. Rev. Lett. 94, 205502 (2005). https://doi.org/10.1103/PhysRevLett.94.205502 , , Google ScholarCrossref
  5. 5. B. Zhang and W. H. Wang, J. Non-Cryst. Solids 352, 5687 (2006). https://doi.org/10.1016/j.jnoncrysol.2006.09.031 , Google ScholarCrossref
  6. 6. B. Zhang, D. Q. Zhao, M. X. Pan, R. J. Wang, and W. H. Wang, Acta Mater. 54, 3025 (2006). https://doi.org/10.1016/j.actamat.2006.02.044 , Google ScholarCrossref
  7. 7. X. F. Liu, R. J. Wang, D. Q. Zhao, M. X. Pan, and W. H. Wang, Appl. Phys. Lett. 91, 041901 (2007). https://doi.org/10.1063/1.2766656 , Google ScholarScitation, ISI
  8. 8. J. Schroers, JOM 57, 35 (2005); https://doi.org/10.1007/s11837-005-0093-2 , Google ScholarCrossref
    J. Schroers, Adv. Mater. 22, 1566 (2010). https://doi.org/10.1002/adma.200902776 , , Google ScholarCrossref, ISI
  9. 9. K. Zhao, X. X. Xia, H. Y. Bai, D. Q. Zhao, and W. H. Wang, Appl. Phys Lett. 98, 141913 (2011). https://doi.org/10.1063/1.3575562 , Google ScholarScitation, ISI
  10. 10. J. Yi, L. S. Huo, H. Y. Bai, and W. H. Wang, Sci. Chin. G 54, 609 (2012). Google ScholarCrossref
  11. 11. G. P. Zhang, Y. Liu, and B. Zhang, Adv. Eng. Mater. 7, 606 (2005). https://doi.org/10.1002/adem.200400187 , Google ScholarCrossref
  12. 12. C. Palmer, Diffraction Grating Handbook, 6th ed. (Newport Corporation, New York, 2005), p. 220. Google Scholar
  13. 13. J. P. Chu, H. Wijaya, C. W. Wu, T. R. Tsai, C. S. Wei, T. G. Nieh, and J. Wadsworth, Appl. Phys. Lett. 90, 034101 (2009). Google ScholarScitation
  14. 14. J. Yi, X. X. Xia, D. Q. Zhao, M. X. Pan, H. Y. Bai, W. H. Wang, Adv. Eng. Mater. 12, 1117 (2010). https://doi.org/10.1002/adem.201000204 , Google ScholarCrossref, ISI
  15. 15. J. Yi, H. Y. Bai, D. Q. Zhao, M. X. Pan, and W. H. Wang, Appl. Phys. Lett. 98, 241917 (2011). https://doi.org/10.1063/1.3599843 , Google ScholarScitation, ISI
  16. 16. R. Busch, J. Schroers, and W. H. Wang, MRS Bull. 32, 620 (2007). https://doi.org/10.1557/mrs2007.122 , Google ScholarCrossref, ISI
  17. 17. J. Ma and W. H. Wang, J. Appl. Phys. 112, 024506 (2012). https://doi.org/10.1063/1.4737484 , Google ScholarScitation
  18. 18. N. Zhang, C. J. Byrne, D. J. Browne, and Mi. D. Gilchrist, Mater. Today 15, 216 (2012). https://doi.org/10.1016/S1369-7021(12)70092-5 , Google ScholarCrossref
  1. © 2012 American Institute of Physics.