ABSTRACT
Aurivillius phase Bi5Ti3Fe0.7Co0.3O15 (BTF7C3O) thin films on α-quartz substrates were fabricated by a chemical solution deposition method and the room temperature ferroelectric and magnetic properties of this candidate multiferroic were compared with those of thin films of Mn3+ substituted, Bi5Ti3Fe0.7Mn0.3O15 (BTF7M3O). Vertical and lateral piezoresponse force microscopy (PFM) measurements of the films conclusively demonstrate that BTF7C3O and BTF7M3O thin films are piezoelectric and ferroelectric at room temperature, with the major polarization vector in the lateral plane of the films. No net magnetization was observed for the in-plane superconducting quantum interference device (SQUID) magnetometry measurements of BTF7M3O thin films. In contrast, SQUID measurements of the BTF7C3O films clearly demonstrated ferromagnetic behavior, with a remanent magnetization, Br, of 6.37 emu/cm3 (or 804 memu/g), remanent moment = 4.99 × 10−5 emu. The BTF7C3O films were scrutinized by x-ray diffraction, high resolution transmission electron microscopy, scanning transmission electron microscopy, and energy dispersive x-ray analysis mapping to assess the prospect of the observed multiferroic properties being intrinsic to the main phase. The results of extensive micro-structural phase analysis demonstrated that the BTF7C3O films comprised of a 3.95% Fe/Co-rich spinel phase, likely CoFe2 − xTixO4, which would account for the observed magnetic moment in the films. Additionally, x-ray magnetic circular dichroism photoemission electron microscopy (XMCD-PEEM) imaging confirmed that the majority of magnetic response arises from the Fe sites of Fe/Co-rich spinel phase inclusions. While the magnetic contribution from the main phase could not be determined by the XMCD-PEEM images, these data however imply that the Bi5Ti3Fe0.7Co0.3O15 thin films are likely not single phase multiferroics at room temperature. The PFM results presented demonstrate that the naturally 2D nanostructured Bi5Ti3Fe0.7Co0.3O15 phase is a novel ferroelectric and has potential commercial applications in high temperature piezoelectric and ferroelectric memory technologies. The implications for the conclusive demonstration of ferroelectric and ferromagnetic properties in single-phase materials of this type are discussed.
ACKNOWLEDGMENTS
The support of Science Foundation Ireland (SFI) under the FORME Strategic Research Cluster Award number 07/SRC/I1172 and Starting Investigator Research Grant (09/SIRG/I1621) is gratefully acknowledged. The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No. 226716. This research was also enabled by the Higher Education Authority Program for Research in Third Level Institutions (2007-2011) via the INSPIRE program. The authors acknowledge ICGEE (International Centre for Graduate Education in Micro & Nano Engineering) for funding Nitin Deepak’s Ph.D. The authors would like to acknowledge Deirdre Kelleher (University College Cork, College Road, Cork), Dr. Marina Manganaro and Dr. Emanuele Pelucchi (Tyndall National Institute) and Dr. Francesco Maccherozzi22 and Professor Sarnjeet Dhesi (Diamond Light Source, Ltd.) for their help in this work.
- 1. D. N. Astrov, Sov. Phys. JETP 11, 708 (1960). Google Scholar
- 2. S. Dong, J.-F. Li, and D. Viehland, Appl. Phys. Lett. 83(11), 2265–2267 (2003). https://doi.org/10.1063/1.1611276 , Google ScholarScitation, ISI
- 3. W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature 442(7104), 759–765 (2006). https://doi.org/10.1038/nature05023 , Google ScholarCrossref
- 4. International Technology Roadmap For Semiconductors, 2009 Edition, Emerging Research Materials. Google Scholar
- 5. E. Ascher, H. Rieder, H. Schmid, and H. Stossel, J. Appl. Phys. 37(3), 1404–1405 (1966). https://doi.org/10.1063/1.1708493 , Google ScholarScitation
- 6. G. Catalan and J. F. Scott, Adv. Mater. 21(24), 2463–2485 (2009). https://doi.org/10.1002/adma.200802849 , Google ScholarCrossref
- 7. B. Aurivillius, Ark. Kemi 1, 499 (1949). Google Scholar
- 8. S. Patri, R. Choudhary, and B. Samantaray, J. Electroceram. 20(2), 119–126 (2008). https://doi.org/10.1007/s10832-007-9376-z , Google ScholarCrossref
- 9. R. A. Armstrong and R. E. Newnham, Mater. Res. Bull. 7(10), 1025–1034 (1972). https://doi.org/10.1016/0025-5408(72)90154-7 , Google ScholarCrossref
- 10. P. Boullay, G. Trolliard, D. Mercurio, J. M. Perez-Mato, and L. Elcoro, J. Solid State Chem. 164(2), 252–260 (2002). https://doi.org/10.1006/jssc.2001.9471 , Google ScholarCrossref
- 11. S.-l. Ahn, Y. Noguchi, M. Miyayama, and T. Kudo, Mater. Res. Bull. 35(6), 825–834 (2000). https://doi.org/10.1016/S0025-5408(00)00284-1 , Google ScholarCrossref
- 12. Y. Noguchi, K. Yamamoto, Y. Kitanaka, and M. Miyayama, J. Eur. Ceram. Soc. 27(13–15), 4081–4084 (2007). https://doi.org/10.1016/j.jeurceramsoc.2007.02.104 , Google ScholarCrossref
- 13. N. A. Hill, J. Phys. Chem. B 104(29), 6694–6709 (2000). https://doi.org/10.1021/jp000114x , Google ScholarCrossref
- 14. N. A. Lomanova, M. I. Morozov, V. L. Ugolkov, and V. V. Gusarov, Inorg. Mater. 42, 189 (2006). https://doi.org/10.1134/S0020168506020142 , Google ScholarCrossref
- 15. X. Y. Mao, W. Wang, and X. B. Chen, Solid State Commun. 147(5–6), 186–189 (2008). https://doi.org/10.1016/j.ssc.2008.05.025 , Google ScholarCrossref
- 16. S. V. Kalinin and A. L. Kholkin, Preface to Special Topic: Piezoresponse Force Microscopy and Nanoscale Phenomena in Polar Materials (AIP, 2011). Google Scholar
- 17. S. V. Kalinin, N. Setter, and A. L. Kholkin, J. Appl. Phys. 108(4), 041901 (2010). https://doi.org/10.1063/1.3474648 , Google ScholarScitation
- 18. L. Keeney, P. F. Zhang, C. Groh, M. E. Pemble, and R. W. Whatmore, J. Appl. Phys. 108(4), 042004 (2010). https://doi.org/10.1063/1.3474959 , Google ScholarScitation, ISI
- 19. L. Keeney, C. Groh, S. Kulkarni, S. Roy, M. E. Pemble, and R. W. Whatmore, J. Appl. Phys. 112, 024101 (2012). https://doi.org/10.1063/1.4734983 , Google ScholarScitation
- 20. J. B. Sun, J. Qu, W. Wang, H. X. Lu, and X. B. Chen, Ferroelectrics 385, 27–32 (2009). https://doi.org/10.1080/00150190902886776 , Google ScholarCrossref
- 21. X. Mao, W. Wang, X. Chen, and Y. Lu, Appl. Phys. Lett. 95(8), 082901 (2009). https://doi.org/10.1063/1.3213344 , Google ScholarScitation, ISI
- 22. F. Maccherozzi, PEEM Image Microscopy Manipulation (PIMMs) IGOR routine. Google Scholar
- 23. B. J. Rodriguez, C. Callahan, S. V. Kalinin, and R. Proksch, Nanotechnology 18(47), 475504 (2007). https://doi.org/10.1088/0957-4484/18/47/475504 , Google ScholarCrossref
- 24. S. Jesse, A. Baddorf, and S. Kalinin, Appl. Phys. Lett. 88(6), 062908 (2006). https://doi.org/10.1063/1.2172216 , Google ScholarScitation, ISI
- 25. S. Jesse, H. N. Lee, and S. V. Kalinin, Rev. Sci. Instrum. 77(7), 073702 (2006). https://doi.org/10.1063/1.2214699 , Google ScholarScitation
- 26. S. Jesse, B. J. Rodriguez, A. P. Baddorf, S. V. Kalinin, and M. Alexe, Microsc. Microanal. 13(suppl. S02), 1582–1583 (2007). https://doi.org/10.1017/S1431927607077719 , Google ScholarCrossref
- 27. Q. Tian, X. Wang, C. Yu, H. Jiang, Z. Zhang, Y. Wang, and S. Lin, Sci. China, Ser. E 52(8), 2295–2301 (2009). https://doi.org/10.1007/s11431-008-0344-x , Google ScholarCrossref
- 28. F. Yiting, F. Shiji, S. Renying, and M. Ishii, Prog. Cryst. Growth Charact. Mater. 40(1–4), 183–188 (2000). https://doi.org/10.1016/S0960-8974(00)00003-6 , Google ScholarCrossref
- 29. Z. G. Zhang, X. F. Wang, and Q. Q. Tian, Sci. Sintering 42, 51–59 (2010). https://doi.org/10.2298/SOS1001051Z , Google ScholarCrossref
- 30. V. P. Zhereb and V. M. Skorikov, Inorg. Mater. 39(0), S121–S145 (2003). https://doi.org/10.1023/B:INMA.0000008890.41755.90 , Google ScholarCrossref
- 31. N. Balke, I. Bdikin, S. V. Kalinin, and A. L. Kholkin, J. Am. Ceram. Soc. 92(8), 1629–1647 (2009). https://doi.org/10.1111/j.1551-2916.2009.03240.x , Google ScholarCrossref
- 32. D. A. Bonnell, S. V. Kalinin, A. L. Kholkin, and A. Gruverman, MRS Bull. 34(9), 648–657 (2009). https://doi.org/10.1557/mrs2009.176 , Google ScholarCrossref
- 33. A. Gruverman and S. Kalinin, J. Mater. Sci. 41(1), 107–116 (2006). https://doi.org/10.1007/s10853-005-5946-0 , Google ScholarCrossref, ISI
- 34. S. V. Kalinin, N. Setter, and A. L. Kholkin, MRS Bull. 34(9), 634–642 (2009). https://doi.org/10.1557/mrs2009.174 , Google ScholarCrossref
- 35. T. Watanabe and H. Funakubo, J. Appl. Phys. 100(5), 051602 (2006). https://doi.org/10.1063/1.2337357 , Google ScholarScitation
- 36. S. V. Kalinin, A. Gruverman, and D. A. Bonnell, Appl. Phys. Lett. 85(5), 795–797 (2004). https://doi.org/10.1063/1.1775881 , Google ScholarScitation
- 37. X.-M. Liu, S.-Y. Fu, and L.-P. Zhu, J. Solid State Chem. 180(2), 461–466 (2007). https://doi.org/10.1016/j.jssc.2006.11.003 , Google ScholarCrossref
- 38. K. Srinivasa Rao, A. Mahesh Kumar, M. Chaitanya Varma, G. S. V. R. K. Choudary, and K. H. Rao, J. Alloys Compd. 488, L6–L9 (2009). https://doi.org/10.1016/j.jallcom.2009.08.086 , Google ScholarCrossref
- 39. B. D. Cullity, Elements of X-Ray Diffraction, 2nd ed. (Addison-Wesley, 1978). Google Scholar
- 40. Crystallographica, v1.60d, (c) Oxford Cryosystems Ltd., 1995-2007. Google Scholar
- 41. C. H. Hervoches, A. Snedden, R. Riggs, S. H. Kilcoyne, P. Manuel, and P. Lightfoot, J. Solid State Chem. 164, 280–291 (2002). https://doi.org/10.1006/jssc.2001.9473 , Google ScholarCrossref
- 42. M. E. Fleet, J. Solid State Chem. 62(1), 75–82 (1986). https://doi.org/10.1016/0022-4596(86)90218-5 , Google ScholarCrossref
- 43. V. L. Mazzocchi and C. B. R. Parente, J. Appl. Crystallogr. 31(718), 718–725 (1998). https://doi.org/10.1107/S0021889898004324 , Google ScholarCrossref
- 44. H. E. Swanson, H. F. McMurdie, M. C. Morris, E. H. Evans, and B. Paretzkin, Natl. Bur. Stand (U.S.) Monogr. 25(9), 22 (1971). Google Scholar
- 45. A. Moure, A. Castro, and L. Pardo, Prog. Solid State Chem. 37(1), 15–39 (2009). https://doi.org/10.1016/j.progsolidstchem.2009.06.001 , Google ScholarCrossref
- 46. J. Wang et al., Chin. Phys. Lett. 26(11), 117301 (2009). https://doi.org/10.1088/0256-307X/26/11/117301 , Google ScholarCrossref
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.