No Access Submitted: 18 May 2012 Accepted: 30 July 2012 Published Online: 13 August 2012
Appl. Phys. Lett. 101, 072101 (2012);
more...View Affiliations
View Contributors
  • Roman Anufriev
  • Nicolas Chauvin
  • Hammadi Khmissi
  • Khalid Naji
  • Michel Gendry
  • Catherine Bru-Chevallier
Wurtzite InP nanowires (NWs), transferred onto various substrates, were investigated by low temperature micro-photoluminescence. A clear PL emission shift, depending on the substrate, is observed and attributed to the substrate-induced strain, generated due to the difference in the thermal expansion coefficients of the InP NWs and the host-substrate during the sample cooling. Moreover, a blueshift of the PL emission peak is observed as the excitation power is increased. This effect, which is not observed on the as-grown sample, is thus a consequence of the host substrate and not an intrinsic property of the nanowires.
Authors are gratefully acknowledging facilities and technological staffs from Nanolyon platform. This work has been supported by the Agence Nationale pour la Recherche project INSCOOP (ANR-11-NANO-012).
  1. 1. M. S. Gudiksen, J. Wang, and C. M. Lieber, J. Phys. Chem. B 106, 4036 (2002). , Google ScholarCrossref, ISI
  2. 2. J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, Science 293(5534), 1455 (2001). , Google ScholarCrossref
  3. 3. A. Mishra, L. V. Titova, T. B. Hoang, H. E. Jackson, L. M. Smith, J. M. Yarrison-Rice, Y. Kim, H. J. Joyce, Q. Gao, H. H. Tan, and C. Jagadish, Appl. Phys. Lett. 91, 263104 (2007). , Google ScholarScitation, ISI
  4. 4. S. Perera, K. Pemasiri, M. A. Fickenscher, H. E. Jackson, L. M. Smith, J. Yarrison-Rice, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, Appl. Phys. Lett. 97, 023106 (2010). , Google ScholarScitation
  5. 5. T. B. Hoang, A. F. Moses, H. L. Zhou, D. L. Dheeraj, B. O. Fimland, and H. Weman, Appl. Phys. Lett. 94, 133105 (2009). , Google ScholarScitation, ISI
  6. 6. N. Chauvin, M. H. Hadj Alouane, R. Anufriev, H. Khmissi, K. Naji, G. Patriarche, C. Bru-Chevallier, and M. Gendry, Appl. Phys. Lett. 100, 011906 (2012). , Google ScholarScitation
  7. 7. G. Sallen, A. Tribu, T. Aichele, R. André, L. Besombes, C. Bougerol, S. Tatarenko, K. Kheng, and J. Ph. Poizat, Phys. Rev. B 80, 085310 (2009). , Google ScholarCrossref, ISI
  8. 8. Y. Kobayashi, M. Fukui, J. Motohisa, and T. Fukui, Physica E 40, 2204 (2008). , Google ScholarCrossref
  9. 9. E. G. Gadret, G. O. Dias, L. C. O. Dacal, M. M. de Lima, Jr., C. V. R. S. Ruffo, F. Iikawa, M. J. S. P. Brasil, T. Chiaramonte, M. A. Cotta, L. H. G. Tizei, D. Ugarte, and A. Cantarero, Phys. Rev. B 82, 125327 (2010). , Google ScholarCrossref
  10. 10. G. L. Tuin, M. T. Borgström, J. Trägårdh, M. Ek, L. R. Wallenberg, L. Samuelson, and M.-E. Pistol, Nano Res. 4, 159 (2011). , Google ScholarCrossref
  11. 11. J. B. Schlager, K. A. Bertness, P. T. Blanchard, L. H. Robins, A. Roshko, and N. A. Sanford, J. Appl. Phys. 103, 124309 (2008). , Google ScholarScitation, ISI
  12. 12. T. Soma, J. Satoh, and H. Matsuo, Solid State Commun. 42, 889 (1982). , Google ScholarCrossref
  13. 13. K. Haruna, H. Maeta, K. Ohashi, and T. Koike, J. Phys. C: Solid State Phys. 20, 5275 (1987). , Google ScholarCrossref
  14. 14. T. Suski and W. Paul, High Pressure in Semiconductor Physics II (Academic, New York, 1998), p. 245. Google Scholar
  15. 15. F. Boxberg, N. Sondergaard, and H. Q. Xu, Nano Lett. 10, 1108 (2010). , Google ScholarCrossref, ISI
  16. 16. R. M. Martin, Phys. Rev. B 6, 4546 (1972). , Google ScholarCrossref
  17. 17. M. W. Larsson, J. B. Wagner, M. Wallin, P. Håkansson, L. E. Fröberg, L. Samuelson, and L. R. Wallenberg, Nanotechnology 18, 015504 (2007). , Google ScholarCrossref, ISI
  18. 18. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl. Phys. 89(11), 1 (2001). , Google ScholarScitation
  19. 19. Z. Y. Zhai, X. S. Wu, Z. S. Jiang, J. H. Hao, J. Gao, Y. F. Cai, and Y. G. Pan, Appl. Phys. Lett. 89, 262902 (2006). , Google ScholarScitation, ISI
  20. 20. S. Q. Wang, Appl. Phys. Lett. 88, 061902 (2006). , Google ScholarScitation
  21. 21. F. Xu, J. W. Durham III, B. J. Wiley, and Y. Zhu, ACS Nano 2, 1556 (2011). , Google ScholarCrossref
  22. 22. C. L. dos Santos and P. Piquini, Phys. Rev. B 81, 075408 (2010). , Google ScholarCrossref
  23. 23. S. Adachi, Physical Properties of III-V Semiconductor Compounds (Wiley-VCH, Mörlenbach, 1992), p. 24. Google ScholarCrossref
  24. 24. M. Bordag, A. Ribayrol, G. Conache, L. E. Frçberg, S. Gray, L. Samuelson, L. Montelius, and H. Pettersson, Small 3(8), 1398 (2007). , Google ScholarCrossref
  25. 25. B. F. Levine, C. J. Pinzone, S. Hui, C. A. King, R. E. Leibenguth, D. R. Zolnowski, D. V. Lang, H. W. Krautter, and M. Geva, Appl. Phys. Lett. 75, 2141 (1999). , Google ScholarScitation
  26. 26. E. Kuokstis, J. W. Yang, G. Simin, M. Asif Khan, R. Gaska, and M. S. Shur, Appl. Phys. Lett. 80, 977 (2002). , Google ScholarScitation, ISI
  27. 27. M. H. M. van Weert, O. Wunnicke, A. L. Roest, T. J. Eijkemans, A. Yu Silov, J. E. M. Haverkort, G. W. ’t Hooft, and E. P. A. M. Bakker, Appl. Phys. Lett. 88, 043109 (2006). , Google ScholarScitation
  1. © 2012 American Institute of Physics.