Published Online: 25 July 2012
Accepted: June 2012
Journal of Mathematical Physics 53, 073516 (2012); https://doi.org/10.1063/1.4737391
more...View Affiliations
We propose a measure of shape which is appropriate for the study of a complicated geometric structure, defined using the topology of neighborhoods of the structure. One aspect of this measure gives a new notion of fractal dimension. We demonstrate the utility and computability of this measure by applying it to branched polymers, Brownian trees, and self-avoiding random walks.
We would like to thank Tom Spencer and Jeremy Mason for useful conversations, and Benjamin Mann for his enthusiastic support. The Institute for Advanced Study and DARPA provided support for this project.
  1. 1. D. C. Brydges and J. Z. Imbrie, “Branched polymers and dimensional reduction,” Ann. Math. 158, 1019–1039 (2003). https://doi.org/10.4007/annals.2003.158.1019 , Google ScholarCrossref
  2. 2. H. Edelsbrunner, “The union of balls and its dual shape,” Discrete Comput. Geom. 13, 415–440 (1995). https://doi.org/10.1007/BF02574053 , Google ScholarCrossref
  3. 3. H. Edelsbrunner and E. P. Mücke, “Three-dimensional alpha shapes,” ACM Trans. Graphics 13(1), 43–72 (1994). https://doi.org/10.1145/174462.156635 , Google ScholarCrossref
  4. 4. H. Edelsbrunner and J. Harer, Computational Topology: An Introduction (AMS, 2009), Chap. 3. Google ScholarCrossref
  5. 5. B. B. Mandelbrot et al., “Crosscut analysis of large radial dla: Departures from self-similarity and lacunarity effects,” Europhys. Lett. 32(3), 199–204 (1995). https://doi.org/10.1209/0295-5075/32/3/002 , Google ScholarCrossref
  6. 6. B. B. Mandelbrot et al., “Deviations from self-similarity in plane dla and the infinite drift scenario,” Europhys. Lett. 29(8), 599–604 (1995). https://doi.org/10.1209/0295-5075/29/8/002 , Google ScholarCrossref
  7. 7. D. G. Kirkpatrick, H. Edelsbrunner, and R. Seidel, “On the shape of a set of points in the plane,” IEEE Trans. Inf. Theory IT-29, 551–559 (1983). https://doi.org/10.1109/TIT.1983.1056714 , Google ScholarCrossref
  8. 8. T. Kennedy, Code for simulating self-avoiding walks. Google Scholar
  9. 9. T. Kennedy, “A faster implementation of the pivot algorithm for self-avoiding walks,” J. Stat. Phys. 106, 407–429 (2002). https://doi.org/10.1023/A:1013750203191 , Google ScholarCrossref
  10. 10. R. Kenyon and P. Winkler, “Branched polymers,” Am. Math. Monthly 116(7), 612–628 (2009). https://doi.org/10.4169/193009709X458582 , Google ScholarCrossref
  11. 11. See http://comptop.stanford.edu/programs/jplex/ for JPlex Library. Google Scholar
  12. 12. B. Nienhuis, Phys. Rev. Lett. 49, 1062 (1982). https://doi.org/10.1103/PhysRevLett.49.1062 , Google ScholarCrossref
  13. 13. M. J. Stock, Dla-nd. Google Scholar
  14. 14. A. Zomorodian and G. Carlsson, “Computing persistent homology,” Discrete Comput. Geom. 33, 249–274 (2005). https://doi.org/10.1007/s00454-004-1146-y , Google ScholarCrossref
  15. © 2012 American Institute of Physics.