No Access Submitted: 07 March 2012 Accepted: 12 May 2012 Published Online: 31 May 2012
Appl. Phys. Lett. 100, 223110 (2012); https://doi.org/10.1063/1.4723574
more...View Affiliations
The emission intensity from the dipole-forbidden state in a spherical quantum dot (QD) was enhanced by introducing an aperture fiber probe close to the ZnO QD to induce a near-field interaction between the probe tip and the QD. The cross-sectional profiles of the photoluminescence intensities of the ground exciton state and the excited exciton states varied spatially in an anti-correlated manner.
This work was partially supported by The University of Tokyo Global COE Program “Secure-Life Electronics,” a Grant-in-Aid for Young Scientists (A), Grants-in-Aid for Scientific Research, Japan Society for the Promotion of Science (JSPS), and a Research Grant (Basic Research) from the TEPCO memorial foundation. The authors gratefully acknowledge Dr. Tony Llopis and Professor A. Neogi, University of North Texas, for their useful advice and discussions.
  1. 1. T. Kawazoe, K. Kobayashi, J. Lim, Y. Narita, and M. Ohtsu, Phys. Rev. Lett. 88, 067404 (2002). https://doi.org/10.1103/PhysRevLett.88.067404 , Google ScholarCrossref
  2. 2. T. Kawazoe, M. Ohtsu, S. Aso, Y. Sawado, Y. Hosoda, K. Yoshizawa, K. Akahane, N. Yamamoto, and M. Naruse, Appl. Phys. B - Lasers Opt. 103, 537 (2011). https://doi.org/10.1007/s00340-011-4375-9 , Google ScholarCrossref
  3. 3. T. Yatsui, H. Jeong, and M. Ohtsu, Appl. Phys. B - Lasers Opt. 93, 199 (2008). https://doi.org/10.1007/s00340-008-3154-8 , Google ScholarCrossref
  4. 4. T. Yatsui, S. Sangu, T. Kawazoe, M. Ohtsu, S. J. An, J. Yoo, and G.-C. Yi, Appl. Phys. Lett. 90, 223110 (2007). https://doi.org/10.1063/1.2743949 , Google ScholarScitation
  5. 5. K. Mukai, S. Abe, and H. Sumi, J. Phys. Chem. B 103, 6096 (1999). https://doi.org/10.1021/jp984469g , Google ScholarCrossref
  6. 6. M. Ohtsu, T. Kawazoe, T. Yatsui, and M. Naruse, IEEE J. Sel. Top. Quantum Electron. 14, 1404 (2008). https://doi.org/10.1109/JSTQE.2008.918110 , Google ScholarCrossref
  7. 7. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001). https://doi.org/10.1126/science.1060367 , Google ScholarCrossref
  8. 8. E. M. Hendriks, Zeitschrift für Physik B Condensed Matter 57, 307 (1984). https://doi.org/10.1007/BF01470421 , Google ScholarCrossref
  9. 9. Y. Liu, T. Morishima, T. Yatsui, T. Kawazoe, and M. Ohtsu, Nanotechnology 22, 215605 (2011). https://doi.org/10.1088/0957-4484/22/21/215605 , Google ScholarCrossref
  10. 10. T. Saiki, S. Mononobe, M. Ohtsu, N. Saito, and J. Kusano, Appl. Phys. Lett. 68, 2612 (1996). https://doi.org/10.1063/1.116198 , Google ScholarScitation
  11. 11. Z. K. Tang, A. Yanase, T. Yasui, Y. Segawa, and K. Cho, Phys. Rev. Lett. 71, 1431 (1993). https://doi.org/10.1103/PhysRevLett.71.1431 , Google ScholarCrossref
  12. 12. L. Zhang, L. Yin, C. Wang, N. Lun, and Y. Qi, Appl. Mater. Interfaces 2, 1769 (2010). https://doi.org/10.1021/am100274d , Google ScholarCrossref
  13. 13. A. D. Yoffe, Adv. Phys. 51, 799 (2002). https://doi.org/10.1080/00018730110117451 , Google ScholarCrossref
  14. 14. N. Sakakura and Y. Masumoto, Phys. Rev. B 56, 4051 (1997). https://doi.org/10.1103/PhysRevB.56.4051 , Google ScholarCrossref
  15. 15. T. Yatsui, J. Lim, M. Ohtsu, S. J. An, and G.-C. Yi, Appl. Phys. Lett. 85, 727 (2004). https://doi.org/10.1063/1.1776338 , Google ScholarScitation
  16. 16. C. Garcia, B. Garrido, P. Pellegrino, R. Ferre, J. A. Moreno, J. R. Morante, L. Pavesi, and M. Cazzanelli, Appl. Phys. Lett. 82, 1595 (2003). https://doi.org/10.1063/1.1558894 , Google ScholarScitation
  1. © 2012 American Institute of Physics.