No Access Submitted: 23 March 2012 Accepted: 08 May 2012 Published Online: 24 May 2012
Review of Scientific Instruments 83, 053112 (2012); https://doi.org/10.1063/1.4721272
more...View Affiliations
View Contributors
  • Ziyu Gu (谷子羽)
  • M. Ofelia Vieitez
  • Eric-Jan van Duijn
  • Wim Ubachs
A spectrometer for the measurement of spontaneous Rayleigh-Brillouin (RB) scattering line profiles at ultraviolet wavelengths from gas phase molecules has been developed, employing a high-power frequency-stabilized UV-laser with narrow bandwidth (2 MHz). The UV-light from a frequency-doubled titanium:sapphire laser is further amplified in an enhancement cavity, delivering a 5 W UV-beam propagating through the interaction region inside a scattering cell. The design of the RB-scattering cell allows for measurements at gas pressures in the range 0−4 bars and at stably controlled temperatures from −30 °C to 70 °C. A scannable Fabry-Perot analyzer with instrument resolution of 232 MHz probes the RB profiles. Measurements on N2 and SF6 gases demonstrate that the high signal-to-noise ratio is achievable with the instrument at the 1% level at the peak amplitude of the scattering profile.
This work was funded by the European Space Agency (ESA) (Contract No. ESTEC-21396/07/NLHE-CCN-2). The authors wish to thank B. Witschas (DLR Oberpfaffenhofen), W. van de Water (TU Eindhoven), A. S. Meijer (RU Nijmegen), and A. G. Straume and O. Le Rille (ESA) for fruitful discussions, and J. Bouma (VU) for technical assistance.
  1. 1. G. B. Benedek, T. Greytak, K. Fritsch, and J. B. Lastovka, J. Opt. Soc. Am. 54, 1284 (1964). https://doi.org/10.1364/JOSA.54.001284 , Google ScholarCrossref
  2. 2. R. Y. Chiao and B. P. Stoicheff, J. Opt. Soc. Am. 54, 1286 (1964). https://doi.org/10.1364/JOSA.54.001286 , Google ScholarCrossref
  3. 3. T. J. Greytak and G. B. Benedek, Phys. Rev. Lett. 17, 179 (1966). https://doi.org/10.1103/PhysRevLett.17.179 , Google ScholarCrossref
  4. 4. E. H. Hara, A. D. May, and H. P. F. Knaap, Can. J. Phys. 49, 420 (1971). https://doi.org/10.1139/p71-053 , Google ScholarCrossref
  5. 5. R. P. Sandoval and R. L. Armstrong, Phys. Rev. A 13, 752 (1976). https://doi.org/10.1103/PhysRevA.13.752 , Google ScholarCrossref
  6. 6. Q. H. Lao, P. E. Schoen, and B. Chu, J. Chem. Phys. 64, 3547 (1976). https://doi.org/10.1063/1.432723 , Google ScholarScitation
  7. 7. V. Ghaem-Maghami and A. D. May, Phys. Rev. A 22, 692 (1980). https://doi.org/10.1103/PhysRevA.22.692 , Google ScholarCrossref, ISI
  8. 8. R. D. Mountain, Rev. Mod. Phys. 38, 205 (1966). https://doi.org/10.1103/RevModPhys.38.205 , Google ScholarCrossref, ISI
  9. 9. C. D. Boley, R. C. Desai, and G. Tenti, Can. J. Phys. 50, 2158 (1972). https://doi.org/10.1139/p72-286 , Google ScholarCrossref
  10. 10. G. Tenti, C. Boley, and R. C. Desai, Can. J. Phys. 52, 285 (1974). Google ScholarCrossref, ISI
  11. 11. M. O. Vieitez, E.-J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. S. de Wijn, N. J. Dam, and W. van de Water, Phys. Rev. A 82, 043836 (2010). https://doi.org/10.1103/PhysRevA.82.043836 , Google ScholarCrossref, ISI
  12. 12. B. Witschas, M. O. Vieitez, E.-J. van Duijn, O. Reitebuch, W. van de Water, and W. Ubachs, Appl. Opt. 49, 4217 (2010). https://doi.org/10.1364/AO.49.004217 , Google ScholarCrossref
  13. 13. L. Letamendia, J. P. Chabrat, G. Nouchi, J. Rouch, C. Vaucamps, and S. H. Chen, Phys. Rev. A 24, 1574 (1981). https://doi.org/10.1103/PhysRevA.24.1574 , Google ScholarCrossref
  14. 14. D. Eden and H. L. Swinney, Opt. Comm. 10, 191 (1974). https://doi.org/10.1016/0030-4018(74)90052-2 , Google ScholarCrossref
  15. 15. T. Matsuoka, K. Sakai, and K. Takagi, Rev. Sci. Instrum. 64, 2136 (1993). https://doi.org/10.1063/1.1143950 , Google ScholarScitation
  16. 16. H. Tanaka and T. Sonehara, Rev. Sci. Instrum. 73, 1998 (2002). https://doi.org/10.1063/1.1469671 , Google ScholarScitation
  17. 17. X. G. Pan, M. N. Shneider, and R. B. Miles, Phys. Rev. Lett. 89, 183001 (2002). https://doi.org/10.1103/PhysRevLett.89.183001 , Google ScholarCrossref
  18. 18. X. G. Pan, M. N. Shneider, and R. B. Miles, Phys. Rev. A 69, 033814 (2004). https://doi.org/10.1103/PhysRevA.69.033814 , Google ScholarCrossref, ISI
  19. 19. A. S. Meijer, A. S. de Wijn, M. F. E. Peters, N. J. Dam, and W. van de Water, J. Chem. Phys. 133, 164315 (2010). https://doi.org/10.1063/1.3491513 , Google ScholarScitation
  20. 20.ADM-Aeolus Science Report,” Tech. Rep. SP-1311, European Space Agency, ESA Communication Production Office, The Netherlands, 2008. Google Scholar
  21. 21. J. C. J. Koelemeij, W. Hogervorst, and W. Vassen, Rev. Sci. Instrum. 76, 033104 (2005). https://doi.org/10.1063/1.1865752 , Google ScholarScitation
  22. 22. J. Vaughan, The Fabry-Perot Interferometer: History, Theory, Practice, and Applications (A. Hilger, 1989), p. 191. Google Scholar
  23. 23. M. Sneep and W. Ubachs, J. Quant. Spectrosc. Radiat. Transf. 92, 293 (2005). https://doi.org/10.1016/j.jqsrt.2004.07.025 , Google ScholarCrossref
  1. © 2012 American Institute of Physics.