No Access Submitted: 12 September 1995 Accepted: 14 November 1995 Published Online: 31 August 1998
J. Chem. Phys. 104, 2757 (1996); https://doi.org/10.1063/1.471098
more...View Affiliations
  • Department of Chemistry, University of California, Berkeley, California, 94720‐1460
View Contributors
  • Gordon R. Burton
  • Cangshan Xu
  • Caroline C. Arnold
  • Daniel M. Neumark
Anion photoelectron spectra of Gen, n=2–15, have been measured using an incident photon energy of 4.66 eV. In addition, the spectra of Ge2, Ge3, and Ge4 have been measured at photon energies of 3.49 and 2.98 eV. From these spectra the electron affinity of the corresponding neutral cluster has been determined. Vibrational frequencies and term values for several electronic states of Ge2 and Ge3 have been determined. Vibrational structure in the 3B3u excited state of Ge4 has been resolved using zero electron kinetic energy (ZEKE) photoelectron spectroscopy. The assignment of the spectra of Ge3 and Ge4 is facilitated by a comparison to the similar spectra of Si3 and Si4, respectively. The spectra of the larger clusters, Gen, n=5–15, are characterized by many broad structureless features which indicate the presence of multiple electronic transitions. Several of these were assigned based on comparison with previous ab initio calculations on germanium and silicon clusters.
  1. 1. D. W. Arnold, S. E. Bradforth, T. N. Kitsopoulos, and D. M. Neumark, J. Chem. Phys. 95, 8753 (1991). Google ScholarScitation, ISI
  2. 2. T. N. Kitsopoulos, C. J. Chick, A. Weaver, and D. M. Neumark, J. Chem. Phys. 93, 6108 (1990). Google ScholarScitation
  3. 3. T. N. Kitsopoulos, C. J. Chick, Y. Zhao, and D. M. Neumark, J. Chem. Phys. 95, 1441 (1991). Google ScholarScitation
  4. 4. T. N. Kitsopoulos, C. J. Chick, Y. Zhao, and D. M. Neumark, J. Chem. Phys. 95, 5479 (1991). Google ScholarScitation
  5. 5. C. C. Arnold, Y. Zhao, T. N. Kitsopoulos, and D. M. Neumark, J. Chem. Phys. 97, 6121 (1992). Google ScholarScitation, ISI
  6. 6. C. C. Arnold and D. M. Neumark, J. Chem. Phys. 99, 3353 (1993). Google ScholarScitation
  7. 7. C. C. Arnold and D. M. Neumark, J. Chem. Phys. 100, 1797 (1994). Google ScholarScitation
  8. 8. C. Xu, E. de Beer, D. W. Arnold, C. C. Arnold, and D. M. Neumark, J. Chem. Phys. 101, 5406 (1994); Google ScholarScitation
    C. C. Arnold and D. M. Neumark, Can. J. Phys. 72, 1322 (1994). , Google ScholarCrossref
  9. 9. C. M. Rohlfing and K. Raghavachari, J. Chem. Phys. 96, 2114 (1992). Google ScholarScitation
  10. 10. E. C. Honea, A. Agura, C. A. Murray, K. Raghavachari, W. O. Sprenger, M. F. Jarrold, and W. L. Brown, Nature 366, 42 (1993). Google ScholarCrossref, ISI
  11. 11. O. Cheshnovsky, S. H. Yang, C. L. Pettiette, M. J. Craycraft, Y. Liu, and R. E. Smalley, Chem. Phys. Lett. 138, 119 (1987). Google ScholarCrossref, ISI
  12. 12. T. F. Giesen, A. Van Orden, H. J. Hwang, R. S. Fellers, R. A. Provencal, and R. J. Saykally, Science 265, 756 (1994), and references therein. Google ScholarCrossref, ISI
  13. 13. F. W. Froben and W. Schulze, Surf. Sci. 156, 765 (1985). Google ScholarCrossref
  14. 14. S. Li, R. J. Van Zee, and W. Weltner, Jr., J. Chem. Phys. 100, 7079 (1994). Google ScholarScitation, ISI
  15. 15. C. C. Arnold, C. Xu, G. R. Burton, and D. M. Neumark, J. Chem. Phys. 102, 6982 (1995). Google ScholarScitation
  16. 16. A. B. Anderson, J. Chem. Phys. 63, 4430 (1975). Google ScholarScitation
  17. 17. J. Harris and R. O. Jones, Phys. Rev. A 18, 2159 (1978). Google ScholarCrossref
  18. 18. G. V. Gadiyak, V. G. Malkin, Y. N. Morokow, and S. F. Ruzankin, Z. Strukt. Khimii 22, 38 (1981). Google Scholar
  19. 19. G. V. Gadiyak, Yu. N. Morokov, A. G. Mukhachev, and S. V. Chernov, Z. Strukt. Khimii 22, 36 (1981). Google Scholar
  20. 20. J. E. Northrup and M. L. Cohen, Chem. Phys. Lett. 102, 440 (1983). Google ScholarCrossref
  21. 21. G. Pacchioni, Mol. Phys. 49, 727 (1983). Google ScholarCrossref
  22. 22. G. Pacchioni, Chem. Phys. Lett. 107, 70 (1984). Google ScholarCrossref
  23. 23. J. E. Kingcade, H. M. Nagarathna-Naik, I. Shim, and K. A. Gingerich, J. Phys. Chem. 90, 2830 (1986). Google ScholarCrossref
  24. 24. I. Shim, H. M. Nagarathna-Naik, and K. A. Gingerich, Int. J. Quantum Chem. 29, 975 (1986). Google ScholarCrossref
  25. 25. J. Andzelm, N. Russo, and D. R. Salahub, J. Chem. Phys. 87, 6562 (1987). Google ScholarScitation
  26. 26. K. Balasubramanian, J. Mol. Spectrosc. 123, 228 (1987). Google ScholarCrossref, ISI
  27. 27. K. Balasubramanian, Chem. Rev. 90, 93 (1990). Google ScholarCrossref
  28. 28. G. Pacchioni, D. Plavsic, and J. Koutecky, Ber. Bunsenges. Phys. Chem. 87, 503 (1983). Google ScholarCrossref
  29. 29. G. Pacchioni and J. Koutecky, Ber. Bunsenges. Phys. Chem. 88, 242 (1984). Google ScholarCrossref
  30. 30. J. Koutecky, G. Pacchioni, G. H. Jeung, and E. C. Haas, Surf. Sci. 156, 650 (1985). Google ScholarCrossref
  31. 31. G. Pacchioni and J. Koutecky, J. Chem. Phys. 84, 3301 (1986). Google ScholarScitation
  32. 32. G. A. Antonio, B. P. Feuston, R. K. Kalia, and P. Vashista, J. Chem. Phys. 88, 7671 (1988). Google ScholarScitation
  33. 33. M. S. Islam and A. K. Ray, Chem. Phys. Lett. 153, 496 (1988). Google ScholarCrossref
  34. 34. D. Dai and K. Balasubramanian, J. Chem. Phys. 96, 8345 (1992). Google ScholarScitation
  35. 35. D. Dai, K. Sumathi, and K. Balasubramanian, Chem. Phys. Lett. 193, 251 (1992). Google ScholarCrossref
  36. 36. D. A. Dixon and J. L. Gole, Chem. Phys. Lett. 188, 560 (1992). Google ScholarCrossref
  37. 37. S. Saito, S. Ohnishi, and S. Sugano, Phys. Rev. B 33, 7036 (1986). Google ScholarCrossref
  38. 38. R. B. Metz, A. Weaver, S. E. Bradforth, T. N. Kitsopoulos, and D. M. Neumark, J. Phys. Chem. 94, 1377 (1990). Google ScholarCrossref, ISI
  39. 39. O. Cheshnovsky, S. H. Yang, C. L. Pettiette, M. J. Craycraft, and R. E. Smalley, Rev. Sci. Instrum. 58, 2131 (1987). Google ScholarScitation, ISI
  40. 40. W. C. Wiley and I. H. McLaren, Rev. Sci. Instrum. 36, 1150 (1955). Google ScholarScitation
  41. 41. T. N. Kitsopoulos, I. M. Waller, J. G. Loeser, and D. M. Neumark, Chem. Phys. Lett. 159, 300 (1989). Google ScholarCrossref, ISI
  42. 42. C. C. Arnold, Y. Zhao, T. N. Kitsopoulos, and D. M. Neumark, J. Chem. Phys. 97, 6121 (1992). Google ScholarScitation, ISI
  43. 43. K. Müller-Dethlefs, M. Sander, and E. W. Schlag, Z. Naturforsch. Teil A 39, 1089 (1984); Google ScholarCrossref
    K. Müller-Dethlefs, M. Sander, and E. W. Schlag, Chem. Phys. Lett. 12, 291 (1984). , Google ScholarCrossref
  44. 44. K. Müller-Detlefs and E. W. Schlag, Annu. Rev. Phys. Chem. 42, 109 (1991). Google ScholarCrossref
  45. 45. S. E. Bradforth, D. W. Arnold, D. M. Neumark, and D. E. Manolopoulos, J. Chem. Phys. 99, 6345 (1993). Google ScholarScitation
  46. 46. R. Fournier, S. B. Sinnott, and A. E. DePristo, J. Chem. Phys. 97, 4149 (1992). Google ScholarScitation
  47. 47. S. Yang, K. J. Taylor, M. J. Craycraft, J. Conceicao, C. L. Pettiette, O. Cheshnovsky, and R. E. Smalley, Chem. Phys. Lett. 144, 431 (1988). Google ScholarCrossref, ISI
  48. 48. C. Jin, K. J. Taylor, J. Conceicao, and R. E. Smalley, Chem. Phys. Lett. 175, 17 (1990). Google ScholarCrossref
  49. 49. K. Raghavachari and C. M. Rohlfing, J. Chem. Phys. 94, 670 (1991). Google ScholarScitation
  50. 50. K. Raghavachari, J. Chem. Phys. 84, 5672 (1986). Google ScholarScitation
  51. 51. K. Raghavachari and C. M. Rohlfing, J. Chem. Phys. 89, 2219 (1988). Google ScholarScitation
  52. 52. C. M. Rohlfing and K. Raghavachari, Chem. Phys. Lett. 167, 559 (1990). Google ScholarCrossref
  1. © 1996 American Institute of Physics.