No Access Submitted: 30 November 1992 Accepted: 08 February 1993 Published Online: 31 August 1998
J. Chem. Phys. 98, 8221 (1993); https://doi.org/10.1063/1.464527
more...View Affiliations
  • Laboratoire de Physique Théorique des Liquides,a) Université Pierre & Marie Curie, Boîte 121, 4 place Jussieu, 75252 Paris France
View Contributors
  • Yves Guissani
  • Bertrand Guillot
The liquid–vapor coexistence curve of a model water (the extended simple point charge model, SPCE) is evaluated by molecular dynamics simulation in the (N,V,E) ensemble. It is shown that the simulated system (N=256 water molecules) is too small to present a spinodal decomposition and, hence, can be described by a classical equation of state whose the critical parameters (Tc=651.7 K, ρc=0.326 g/cm3, and Pc=189 bar) are found to be very close to that of real water (Tc=647.13 K, ρc=0.322 g/cm3, and Pc=220.55 bar). The critical parameters for SPCE water in the thermodynamic limit are deduced from the simulation data employing Wegner type expansions for the order parameter and the coexistence curve diameter; here also the values of the critical parameters (Tc=640 K, ρc=0.29 g/cm3, and Pc=160 bar) are close to that of real water. The temperature dependence of the dielectric constant for water and steam at orthobaric densities is next evaluated between ambient and Tc; the agreement with the experimental data is quite remarkable (e.g., εSPCE=81.0 at 300 K and εSPCE=6. at Tc instead of 78.0 and 5.3, respectively, in real water). The modifications experienced by water’s architecture with the temperature are deduced from the evaluation of the atom–atom correlation functions. It is shown that a structural change occurs in the temperature range 423–473 K. This important reorganization is characterized by a shift of the second shell of neighbors from 4.5 to 5.5 A and the loss of almost all angular correlations beyond the first solvation shell. Moreover, it is observed that the average number of hydrogen bonds per molecule nHB scales with the density all along the saturation curve. In the same way the values of nHB for orthobaric densities seems to follow a law analogous to the law of rectilinear diameter for orthobaric densities.
  1. 1. E. U. Franck, J. Chem. Thermodyn. 19, 225 (1987). Google ScholarCrossref
  2. 2. A. Rahman and F. H. Stillinger, J. Chem. Phys. 55, 3336 (1971). Google ScholarScitation, ISI
  3. 3. D. Levesque and J. J. Weiss, in The Monte Carlo Method in Condensed Matter Physics, edited by K. Binder (Springer, Berlin, 1991), p. 121. Google Scholar
  4. 4. S. B. Zhu, S. Yao, J. B. Zhu, S. Singh, and G. W. Robinson, J. Phys. Chem. 95, 6211 (1991). Google ScholarCrossref
  5. 5. H. J. C. Berendsen, J. P. M. Postma, W. F. Von Gunsteren, and J. Hermans, in Intermodular Forces, edited by B. Pullman (Reidel, Dordrecht, 1981), p. 331. Google Scholar
  6. 6. B. Guillot, J. Chem. Phys. 95, 1453 (1991). Google ScholarCrossref
  7. 7. O. Matsuoka, E. Clementi, and M. Yoshimine, J. Chem. Phys. 64, 1351 (1976). Google ScholarScitation, ISI
  8. 8. P. Barnes, J. L. Finney, J. D. Nicholas, and J. E. Quinn, Nature (London) 282, 459 (1979). Google ScholarCrossref, ISI
  9. 9. H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J. Phys. Chem. 91, 6269 (1987). Google ScholarCrossref, ISI
  10. 10. M. Sprik and M. L. Klein, J. Chem. Phys. 89, 7556 (1988). Google ScholarScitation, ISI
  11. 11. K. Watanabe and M. L. Klein, Chem. Phys. 131, 157 (1989). Google ScholarCrossref, ISI
  12. 12. S. Kuwajima and A. Warshel, J. Phys. Chem. 94, 460 (1990). Google ScholarCrossref
  13. 13. P. Ahlström, A. Wallqvist, S. Engström, and B. Jönsson, Mol. Phys. 68, 563 (1989). Google ScholarCrossref, ISI
  14. 14. T. P. Straatsma and J. A. McCammon, Mol. Simulations 5, 181 (1990). Google ScholarCrossref
  15. 15. P. Cieplak, P. A. Kollman, and T. Lybrand, J. Chem. Phys. 92, 6755 (1990). Google ScholarScitation
  16. 16. J. Caldwell, L. X. Dang, and P. A. Kollman, J. Am. Chem. Soc. 112, 9145 (1990). Google ScholarCrossref
  17. 17. G. C. Lie and E. Clementi, Phys. Rev. A 33, 2679 (1986). Google ScholarCrossref, ISI
  18. 18. O. Teleman, B. Jönsson, and S. Engström, Mol. Phys. 60, 193 (1987); Google ScholarCrossref, ISI
    A. Wallqvist and O. Teleman, Mol. Phys. 74, 515 (1991). , Google ScholarCrossref, ISI
  19. 19. J. Anderson, J. Ullo, and S. Yip, J. Chem. Phys. 87, 1726 (1987). Google ScholarScitation, ISI
  20. 20. J. L. Barrat and I. R. McDonald, Mol. Phys. 70, 535 (1990). Google ScholarCrossref
  21. 21. D. E. Smith and A. D. J. Haymet, J. Chem. Phys. 96, 8450 (1992). Google ScholarScitation, ISI
  22. 22. A. Wallqvist, Chem. Phys. 148, 439 (1990); Google ScholarCrossref
    A. Wallqvist, P. Ahlström, and G. Karlström, J. Phys. Chem. 94, 1649 (1990). , Google ScholarCrossref, ISI
  23. 23. Y. Guissani, B. Guillot, and S. Bratos, J. Chem. Phys. 88, 5850 (1988). Google ScholarScitation, ISI
  24. 24. Y. Kataoka, J. Chem. Phys. 87, 589 (1987); Google ScholarScitation
    Y. Kataoka, H. Hamada, S. Nose, and T. Yamamoto, J. Chem. Phys. 77, 5699 (1982)., J. Chem. Phys. , Google ScholarScitation
  25. 25. J. J. De Pablo and J. M. Prausnitz, Fluid Phase Equilibria 53, 177 (1989). Google ScholarCrossref, ISI
  26. 26. J. J. De Pablo, J. M. Prausnitz, H. J. Strauch, and P. T. Cummings, J. Chem. Phys. 93, 7355 (1990); Google ScholarScitation, ISI
    H. J. Strauch and P. T. Cummings, J. Chem. Phys. 96, 864 (1991)., J. Chem. Phys. , Google ScholarScitation
  27. 27. A. Z. Panagiotopoulos, Mol. Phys. 61, 813 (1987). Google ScholarCrossref, ISI
  28. 28. J. J. Nicolas, K. E. Gubbins, W. B. Street, and D. J. Tildesley, Mol. Phys. 37, 1429 (1979). Google ScholarCrossref, ISI
  29. 29. F. H. Ree, J. Chem. Phys. 73, 5401 (1980). Google ScholarScitation, ISI
  30. 30. M. R. Reddy and S. F. O’Shea, Can. J. Phys. 64, 677 (1986). Google ScholarCrossref, ISI
  31. 31. F. F. Abraham, Phys. Rep. 53, 93 (1979). Google ScholarCrossref, ISI
  32. 32. J. P. Hansen and L. Verlet, Phys. Rev. 184, 151 (1969). Google ScholarCrossref, ISI
  33. 33. M. R. Mruzik, F. F. Abraham, and G. M. Pound, J. Chem. Phys. 69, 3462 (1978). Google ScholarScitation, ISI
  34. 34. J. P. Hansen, Phys. Rev. A 2, 221 (1970). Google ScholarCrossref, ISI
  35. 35. L. Haar, J. S. Gallagher, and G. S. Kell, NBS/NRC Steam Tables (Hemisphere, Washington, D.C., 1984). Google Scholar
  36. 36. J. M. H. Levelt Sengers, J. Straub, K. Watanabe, and P. G. Hill, J. Phys. Chem. Ref. Data 14, 193 (1985). Google ScholarScitation
  37. 37. F. Sokolic, Y. Guissani, and G. Baranovic, Chem. Phys. Lett. 131, 513 (1986). Google ScholarCrossref
  38. 38. J. S. Rowlinson and F. L. Swinton, Liquid and Liquid Mixtures, 3rd ed. (Butterworth, London, 1982). Google Scholar
  39. 39. J. M. H. Levelt Sengers, Physica 73, 73 (1974). Google ScholarCrossref
  40. 40. J. V. Sengers and J. M. H. Levelt Sengers, Ann. Rev. Phys. Chem. 37, 189 (1986). Google ScholarCrossref
  41. 41. J. Weiner, K. H. Langley, and N. C. Ford, Jr., Phys. Rev. Lett. 32, 879 (1974). Google ScholarCrossref, ISI
  42. 42. E. T. Shimanskaya, I. V. Bezruchko, V. I. Basok, and Y. I. Shimanskii, Sov. Phys. JETP 53, 139 (1981). Google Scholar
  43. 43. S. Jüngst, B. Knuth, and F. Hensel, Phys. Rev. Lett. 55, 2160 (1985). Google ScholarCrossref
  44. 44. F. Hensel, J. Phys. Condens. Matt. 2, SA33-SA 45 (1990). Google ScholarCrossref
  45. 45. R. E. Goldstein and N. W. Ashcroft, Phys. Rev. Lett. 55, 2164 (1985). Google ScholarCrossref
  46. 46. R. E. Goldstein, A. Parola, N. W. Ashcroft, M. W. Pestak, N. H. W. Chan, J. R. de Bruyn, and D. A. Balzarini, Phys. Rev. Lett. 58, 41 (1987). Google ScholarCrossref
  47. 47. R. E. Goldstein and A. Parola, Phys. Rev. A 35, 4770 (1987). Google ScholarCrossref
  48. 48. M. W. Pestak, R. E. Goldstein, M. H. W. Chan, J. R. de Bruyn, D. A. Balzarini, and N. W. Ashcroft, Phys. Rev. B 36, 599 (1987). Google ScholarCrossref
  49. 49. R. E. Goldstein and A. Parola, J. Chem. Phys. 88, 7059 (1988). Google ScholarScitation
  50. 50. R. E. Goldstein and A. Parola, Acc. Chem. Res. 22, 77 (1989). Google ScholarCrossref
  51. 51. B. Guillot, Y. Guissani, and S. Bratos, J. Chem. Phys. 95, 3643 (1991). Google ScholarScitation, ISI
  52. 52. F. J. Wegner, Phys. Rev. B 5, 4529 (1972). Google ScholarCrossref, ISI
  53. 53. M. Ley-Koo and M. S. Green, Phys. Rev. A 23, 2650 (1981). Google ScholarCrossref
  54. 54. V. G. Boïko, V. M. Sisoev, and A. V. Chalyi, Sov. Phys. JETP 70, 472 (1990); Google Scholar
    M. A. Anisimov, S. B. Kiselev, J. V. Sengers, and S. Tang, Physica 188, 487 (1992). Google ScholarCrossref
  55. 55. J. M. J. Van Leeuwen and J. V. Sengers, Physica A 132, 207 (1985). Google ScholarCrossref
  56. 56. K. K. Mon and K. Binder, J. Chem. Phys. 96, 6989 (1992). Google ScholarScitation, ISI
  57. 57. J. Verschaffelt, Commun. Lab. Phys. Univ. Leiden 28, 1 (1896). Google Scholar
  58. 58. R. R. Singh and K. S. Pitzer, J. Chem. Phys. 90, 5742 (1989). Google ScholarScitation
  59. 59. K. S. Pitzer, Pure and App. Chem. 61, 979 (1989). Google ScholarCrossref
  60. 60. D. A. Goldhammer, Z. Phys. Chem. 71, 577 (1910). Google ScholarCrossref
  61. 61. E. A. Guggenheim, J. Chem. Phys. 13, 253 (1945). Google ScholarScitation, ISI
  62. 62. M. R. Reddy and M. Berkowitz, Chem. Phys. Lett. 155, 173 (1989). Google ScholarCrossref
  63. 63. S. W. de Leeuw, J. W. Perram, and E. R. Smith, Proc. R. Soc. London, Ser. A 388, 177 (1983). Google ScholarCrossref
  64. 64. Notice that at 300 K we obtain a value of 81.3 for SPCE water, a value very close to that obtained by one of us for SPC water (ε = 80 in Ref. 6). Although the statistical inaccuracies are large at room temperature we think that the difference between our value and that of Reddy and Berkowitz for SPCE water (ε = 70.7 in Ref. 62) could be attributed to their use of a reaction field geometry instead of an Ewald sum in our calculation. Thus for SPC water, two calculations made by different authors (Refs. 6 and 19) in similar conditions (Ewald sum) give very close results (ε = 80 in Ref. 6 and ε = 82.5 in Ref. 19), whereas these values are systematically larger than that obtained by Alper and Levy [J. Chem. Phys. 91, 1242 (1989)] using a reaction field geometry (ε = 68 in this case). Google ScholarScitation
  65. 65. K. Heger, M. Uematsu, and E. U. Franck, Ber. Bunsenges. Phys. Chem. 84, 758 (1980). Google ScholarCrossref
  66. 66. A. K. Soper and M. G. Phillips, Chem. Phys. 107, 47 (1986). Google ScholarCrossref, ISI
  67. 67. R. D. Mountain, J. Chem. Phys. 90, 1866 (1989). Google ScholarScitation, ISI
  68. 68. J. L. Finney and H. F. J. Savage, Croatica Chem. Acta 64, 371 (1991). Google Scholar
  69. 69. Y. E. Gorbaty and Y. N. Demianets, Chem. Phys. Lett. 100, 450 (1983); Google ScholarCrossref, ISI
    Y. E. Gorbaty and Y. N. Demianets, Zh. Strukt. Khim. 23, 73 (1982). , Google Scholar
  70. 70. A. H. Narten and H. A. Levy, J. Chem. Phys. 55, 2263 (1971). Google ScholarScitation, ISI
  71. 71. H. E. Stanley and J. Texeira, J. Chem. Phys. 73, 3404 (1980). Google ScholarScitation, ISI
  72. 72. A. Geiger, F. H. Stillinger, and A. Rahman, J. Chem. Phys. 70, 4185 (1979). Google ScholarScitation, ISI
  73. 73. K. Krynicki, C. D. Green, and D. W. Sawyer, Faraday Discuss. Chem. Soc. 66, 199 (1978). Google ScholarCrossref
  74. 74. R. Hausser, G. Maier and F. Noack, Z. Naturforsch. Teil A 21, 1410 (1966). Google ScholarCrossref
  75. 75. M. A. Styrikovich, G. V. Yukhnevich, A. A. Vetrov, and A. A. Vigasin, Sov. Phys. Dokl. 18, 327 (1973). Google Scholar
  76. 76. Yu. V. Lisichkin, A. G. Novikov, and N. K. Fomichev, Russian J. Phys. Chem. 59, 987 (1985). Google Scholar
  77. 77. Recently R. D. Mountain (Ref. 67) has presented a related discussion for TIP4P water but in a different context. In particular the thermodynamic path investigated by this author does not coincide with the saturation line of TIP4P water and eventual correlations are uneasy to extract from these data. Google Scholar
  1. © 1993 American Institute of Physics.