No Access Submitted: 10 August 1990 Accepted: 16 April 1991 Published Online: 31 August 1998
J. Chem. Phys. 95, 1943 (1991);
more...View Contributors
  • Daniel Kivelson
  • Werner Steffen
  • Gerhard Meier
  • Adam Patkowski
In studying the VH depolarized Rayleigh light‐scattering spectrum of orthoterphenyl we have separated an ‘‘intermediate’’ line with almost temperature‐independent halfwidth of 50 GHz from both the narrower rotational line with strongly temperature‐dependent halfwidth and the broader base line associated with short‐range overlap interactions. The integrated intensity IVH of the intermediate line decreases by a factor of 25 as the temperature decreases over a range for which the viscosity increases by 11 orders of magnitude. It appears that the extrapolated value of (IVH2)1/2 for this line vanishes as TT0, where ρ is the density and T0 is the ideal liquid–glass transition temperature established by fitting a Vogel–Fulcher relation to the viscosity. We associate this intermediate line with dipole–induced‐dipole interactions; its intensity is then given by an equal‐time correlation function involving two‐, three‐, and four‐body interactions. Because dipole interactions are quite long range, this correlation function may be a good probe of local molecular order, and IVH may thus be a good molecular structural (thermodynamic) indicator (order parameter) of the liquid–glass transition, the first such indicator identified.
  1. 1. G. Harrison, The Dynamical Properties of Supercooled Liquids (Academic, London, 1976). Google Scholar
  2. 2. Goetze, J. Noncryst. Solids (to be published). Google Scholar
  3. 3. G. Adam and J. H. Gibbs, J. Chem. Phys. 43, 139 (1965). Google ScholarScitation, ISI
  4. 4. J. Sethna, Europhys. Lett. 6, 529 (1988). Google ScholarCrossref
  5. 5. M. Thibeau, B. Oksengorn, and B. Vodar, J. Phys. (Paris) 29, 287 (1968); Google ScholarCrossref
    M. Thibeau, A. Gharbi, Y. LeDuff, and V. Siergiescu, J. Phys. (Paris) 38, 641 (1977)., J. Phys. (Paris) , Google ScholarCrossref
  6. 6. C. A. Angell, in Proceedings of the Workshop on Relaxations in Complex Systems, edited by K. L. Ngai and G. B. Wright (National Technical Information Service, U.S. Department of Commerce, Springfield, VA, 1984). Google Scholar
  7. 7. W. Kauzmann, Chem. Rev. 43, 219 (1948). Google ScholarCrossref, ISI
  8. 8. E. Bartsch (private communication). Google Scholar
  9. 9. J. P. McTague and G. Birnbaum, Phys. Rev. Lett. 21, 661 (1968); Google ScholarCrossref, ISI
    H. Levine and G. Birnbaum, Phys. Rev. Lett. 20, 439 (1968); , Phys. Rev. Lett. , Google ScholarCrossref
    Phenomena Induced by Intermodular Interactions, edited by G. Birnbaum, Vol. 127 in Series B (Plenum, New York, 1985). , Google Scholar
  10. 10. B. Guillot, S. Bratos, and G. Birnbaum, Phys. Rev. A 22, 2230 (1980); Google ScholarCrossref
    B. Guillot, S. Bratos, and G. Birnbaum, 25, 773 (1982)., Phys. Rev. A, , Google ScholarCrossref
  11. 11. G. Tarjus, V. Friedrich, and D. Kivelson, J. Mol. Struct. 223, 253 (1990). Google ScholarCrossref
  12. 12. V. Friedrich, G. Tarjus, and D. Kivelson, J. Chem. Phys. 93, 2246 (1990). Google ScholarScitation, ISI
  13. 13. P. A. Fleury, J. M. Worlock, and H. L. Carter, Phys. Rev. Lett. 27, 1493 (1971); Google ScholarCrossref, ISI
    P. A. Fleury, J. M. Worlock, and H. L. Carter, 30, 591 (1973)., Phys. Rev. Lett. , Google ScholarCrossref, ISI
  14. 14. T. Keyes, J. McTague, and D. Kivelson, J. Chem. Phys. 55, 4096 (1971). Google ScholarScitation, ISI
  15. 15. B. Berne and R. Pecora, Dynamic Light Scattering (Wiley, New York, 1976). Google Scholar
  16. 16. A. Gershel, in Molecular Liquids, edited by A. Barnes, W. Orville-Thomas, and J. Yarwood, Vol. 135 in NATO Advanced Study Institutes, Ser. C (Reidel, Boston, 1984), p. 163. Google Scholar
  17. 17. G. P. Johari, Ann. N. Y. Acad. Sci. 279, 117 (1976). Google ScholarCrossref, ISI
  18. 18. P. A. Madden, Chem. Phys. Lett. 47, 174 (1977); Google ScholarCrossref
    P. A. Madden, Mol. Phys. 36, 365 (1978). , Google ScholarCrossref, ISI
  19. 19. P. A. Madden and D. J. Tildesley, Mol. Phys. 55, 969 (1985). Google ScholarCrossref, ISI
  20. 20. M. A. Ricci, G. Ruocco, and M. Samplal, Mol. Phys. 67, 19 (1989). Google ScholarCrossref, ISI
  21. 21. A. J. C. Ladd, T. A. Litovitz, and C. J. Montrose, J. Chem. Phys. 71, 4242 (1979). Google ScholarScitation, ISI
  22. 22. W. Steffen, M. Sci. thesis, Max-Planck-Institut für Polymerforschung-Mainz, 1990. Google Scholar
  23. 23. W. Steffen, A. Patkowski, G. Meier, and E. W. Fischer (to be published). Google Scholar
  24. 24. R. J. Greet and D. J. Turnbull, J. Chem. Phys. 46, 1243 (1967). Google ScholarScitation, ISI
  25. 25. S. M. Silence, S. R. Goates, and K. A. Nelson, Chem. Phys. 149, 233 (1990). Google ScholarCrossref
  26. 26. R. M. Ernst, S. Nagel, and G. S. Grest, Phys. Rev. B 43, 8070 (1991). Google ScholarCrossref, ISI
  1. © 1991 American Institute of Physics.