Published Online: 31 August 1998
Accepted: December 1987
J. Chem. Phys. 88, 4535 (1988); https://doi.org/10.1063/1.453761
more...
We present a unified description of the position‐space wave functions, the momentum‐space wave functions, and the phase‐space Wigner functions for the bound states of a Morse oscillator. By comparing with the functions for the harmonic oscillator the effects of anharmonicity are visualized. Analytical expressions for the wave functions and the phase space functions are given, and it is demonstrated how a numerical problem arising from the summation of an alternating series in evaluating Laguerre functions can be circumvented. The method is applicable also for other problems where Laguerre functions are to be calculated. The wave and phase space functions are displayed in a series of curves and contour diagrams. An Appendix discusses the calculation of the modified Bessel functions of real, positive argument and complex order, which is required for calculating the phase space functions for the Morse oscillator.
  1. 1. P. M. Morse, Phys. Rev. 34, 57 (1929). Google ScholarCrossref
  2. 2. P. M. Davidson, Proc. R. Soc. London Ser. A 135, 459 (1932). Google ScholarCrossref
  3. 3. G. Pöschl and E. Teller, Z. Phys. 83, 143 (1933). Google ScholarCrossref
  4. 4. D. ter Haar, Phys. Rev. 70, 222 (1946). Google ScholarCrossref
  5. 5. C. L. Pekeris, Phys. Rev. 45, 98 (1934). Google ScholarCrossref
  6. 6. J. Rundgren, Ark. Fys. 30, 61 (1965). Google Scholar
  7. 7. I. R. Elsum and R. G. Gordon, J. Chem. Phys. 76, 5452 (1982). Google ScholarScitation
  8. 8. J. P. Dahl, Phys. Scr. 25, 449 (1982). Google ScholarCrossref
  9. 9. J. P. Dahl, in Energy Storage and Redistribution in Molecules, edited by J. Hinze (Plenum, New York, 1983), p. 557. Google Scholar
  10. 10. J. P. Dahl and M. Springborg, Mol. Phys. 47, 1001 (1982). Google ScholarCrossref
  11. 11. M. Springborg, Theor. Chim. Acta (Berlin) 63, 349 (1983). Google ScholarCrossref
  12. 12. M. Springborg and J. P. Dahl, Phys. Rev. A 36, 1050 (1987). Google ScholarCrossref
  13. 13. L. I. Schiff, Quantum Mechanics (McGraw‐Hill, New York, 1968). Google Scholar
  14. 14. E. Wigner, Phys. Rev. 40, 749 (1932). Google ScholarCrossref
  15. 15. M. Abramowitz and I. A. Segun, Handbook of Mathematical Functions (U.S. National Bureau of Standards, Washington, D.C., 1964). Google Scholar
  16. 16. H. J. Groenewold, Physica 12, 405 (1946). Google ScholarCrossref
  17. 17. M. S. Bartlett and J. E. Moyal, Proc. Cambridge Philos. Soc. 45, 545 (1949). Google ScholarCrossref
  18. 18. T. Takabayasi, Prog. Theor. Phys. (Japan) 11, 341 (1954). Google ScholarCrossref
  19. 19. A. Grossmann, Commun. Math. Phys. 48, 191 (1976). Google ScholarCrossref
  20. 20. A. Royer, Phys. Rev. A 15, 449 (1977). Google ScholarCrossref
  21. 21. J. P. Dahl, Physica A 114, 439 (1982). Google ScholarCrossref
  22. 22. S. R. deGroot and L. G. Suttorp, Foundations of Electrodynamics (North‐Holland, Amsterdam, 1972). Google Scholar
  23. 23. K. Scholz, Z. Phys. 78, 751 (1932). Google ScholarCrossref
  24. 24. M. M. Nieto and L. M. Simmons, Jr., Phys. Rev. A 19, 438 (1979). Google ScholarCrossref
  25. 25. D. T. Birtwistle, Chem. Phys. Lett. 63, 523 (1979). Google ScholarCrossref
  26. 26. V. S. Vasan and R. J. Cross, J. Chem. Phys. 78, 3869 (1983). Google ScholarScitation
  27. 27. F. Karlsson and C. Jedrzejek, J. Chem. Phys. 86, 3532 (1987). Google ScholarScitation
  28. 28. G. Delgado‐Barrio, A. M. Cortina, A. Varadé, P. Mareca, P. Villarreal, and S. Miret‐Artés, J. Comp. Chem. 7, 208 (1986). Google ScholarCrossref
  29. 29. R. D. Levine, Chem. Phys. Lett. 95, 87 (1983). Google ScholarCrossref
  30. 30. Y. Alhassid and F. Iachello, Chem. Phys. Lett. 99, 27 (1983). Google ScholarCrossref
  31. 31. G. D. Billing and G. Jolicard, Chem. Phys. Lett. 102, 491 (1983). Google ScholarCrossref
  32. 32. M. Berrondo, A. Palma, and J. L. López‐Bomilla, Int. J. Quantum Chem. 31, 243 (1987). Google ScholarCrossref
  33. 33. R. J. Sension and H. L. Strauss, J. Chem. Phys. 85, 3791 (1986). Google ScholarScitation
  34. 34. I. L. Cooper, Chem. Phys. 112, 67 (1987). Google ScholarCrossref
  35. 35. G. N. Watson, Theory of Bessel Functions (Cambridge University, Cambridge, 1944). Google Scholar
  36. 36. H.‐W. Lee and M. O. Scully, J. Chem. Phys. 77, 4604 (1982). Google ScholarScitation
  37. 37. J. C. Gray and D. G. Truhlar, J. Chem. Phys. 76, 5350 (1982). Google ScholarScitation
  38. 38. N. E. Henriksen, V. Engel, and R. Schinke, J. Chem. Phys. 86, 6862 (1987). Google ScholarScitation
  39. 39. J. P. Dahl, in Semiclassical Descriptions of Atomic and Nuclear Collisions, edited by J. Bang and J. de Boer (Elsevier, Amsterdam, 1985), p. 379. Google Scholar
  40. 40. F. W. J. Olver, Philos. Trans. R. Soc. London 247, 328 (1955). Google ScholarCrossref
  41. 41. British Association Mathematical Tables X. Bessel Functions. Part II, Functions of Positive Integer Order 2 to 20 (London, 1952). Google Scholar
  42. 42. J. Mathews and R. L. Walker, Mathematical Methods of Physics (Benjamin Cummins, Reading, MA, 1964). Google Scholar
  43. © 1988 American Institute of Physics.