ABSTRACT
We propose the extension of the test-area methodology, originally proposed to evaluate the surface tension of planar fluid-fluid interfaces along a computer simulation in the canonical ensemble, to deal with the solid-fluid interfacial tension of systems adsorbed on slitlike pores using the grand canonical ensemble. In order to check the adequacy of the proposed extension, we apply the method for determining the density profiles and interfacial tension of spherical molecules adsorbed in slitlike pore with different pore sizes and solid-fluid dispersive energy parameters along the same simulation. We also calculate the solid-fluid interfacial tension using the original test-area method in the canonical ensemble. Agreement between the results obtained from both methods indicate that both methods are fully equivalent. The advantage of the new methodology is that allows to calculate simultaneously the density profiles and the amount of molecules adsorbed onto a slitlike pore, as well as the solid-fluid interfacial tension. This ensures that the chemical potential at which all properties are evaluated during the simulation is exactly the same since simulations can be performed in the grand canonical ensemble, mimicking the conditions at which the adsorption experiments are most usually carried out in the laboratory.
ACKNOWLEDGMENTS
The authors would like to acknowledge helpful discussions with B. Mendiboure. This work was supported by Ministerio de Ciencia e Innovación (MICINN, Spain) through Grant Nos. FIS2010-14866, FIS2009-07923, and FPU Ref. AP2007-02172 (J.M.M.). Further financial support from Proyecto de Excelencia from Junta de Andalucía (Grant No. P07-FQM02884) and Universidad de Huelva are also acknowledged.
- 1. J. W. Cahn and J. E. Hilliard, J. Chem. Phys. 28, 258 (1958). https://doi.org/10.1063/1.1744102 , Google ScholarScitation, ISI
- 2. B. S. Carey, H. T. Davis, and L. E. Scriven, AIChE J. 26, 705 (1980). https://doi.org/10.1002/aic.690260502 , Google ScholarCrossref
- 3. C. Miqueu, B. Mendiboure, A. Gracia, and J. Lachaise, Fluid Phase Equilib. 218, 189 (2004). https://doi.org/10.1016/j.fluid.2003.12.008 , Google ScholarCrossref
- 4. C. Miqueu, B. Mendiboure, A. Gracia, and J. Lachaise, Ind. Eng. Chem. Res. 44, 3321 (2005). https://doi.org/10.1021/ie049086l , Google ScholarCrossref
- 5. G. Galliero, M. M. Piñeiro, B. Mendiboure, C. Miqueu, T. Lafitte, and D. Bessières, J. Chem. Phys. 130, 104704 (2009). https://doi.org/10.1063/1.3085716 , Google ScholarScitation, ISI
- 6. T. Lafitte, B. Mendiboure, M. M. Piñeiro, D. Bessières, and C. Miqueu, J. Phys. Chem. B 114, 11110 (2010). https://doi.org/10.1021/jp103292e , Google ScholarCrossref
- 7. C. Miqueu, J. M. Míguez, M. M. Piñeiro, T. Lafitte, and B. Mendiboure, J. Phys. Chem. B 115, 9618 (2011). https://doi.org/10.1021/jp202276k , Google ScholarCrossref
- 8. R. Evans, ‘‘Density functionals in the theory of nonuniform fluids,” Fundamentals of Inhomogeneous Fluids (Dekker, New York, 1992). Google Scholar
- 9. H. T. Davis, Statistical Mechanics of Phases, Interfaces and Thin Films (VCH, Weinhem, 1996) . Google Scholar
- 10. Y. Rosenfeld, Phys. Rev. Lett. 63, 980 (1989). https://doi.org/10.1103/PhysRevLett.63.980 , Google ScholarCrossref, ISI
- 11. Y. X. Yu and J. Z. Wu, J. Chem. Phys. 117, 2368 (2002). https://doi.org/10.1063/1.1491240 , Google ScholarScitation, ISI
- 12. Y. X. Yu and J. Z. Wu, J. Chem. Phys. 119, 2288 (2003). https://doi.org/10.1063/1.1584426 , Google ScholarScitation
- 13. F. Llovell, A. Galindo, F. J. Blas, and G. Jackson, J. Chem. Phys. 133, 024704 (2010). https://doi.org/10.1063/1.3449143 , Google ScholarScitation, ISI
- 14. E. de Miguel, J. Phys. Chem. B 112, 4674 (2008). https://doi.org/10.1021/jp7095983 , Google ScholarCrossref
- 15. L. G. MacDowell and P. Bryk, Phys. Rev. E 75, 061609 (2007). https://doi.org/10.1103/PhysRevE.75.061609 , Google ScholarCrossref, ISI
- 16. G. J. Gloor, G. Jackson, F. J. Blas, and E. de Miguel, J. Chem. Phys. 123, 134703 (2005). https://doi.org/10.1063/1.2038827 , Google ScholarScitation, ISI
- 17. E. de Miguel and G. Jackson, Mol. Phys. 104, 3717 (2006). https://doi.org/10.1080/00268970601095335 , Google ScholarCrossref, ISI
- 18. P. E. Brumby, A. J. Haslam, E. de Miguel, and G. Jackson, Mol. Phys. 109, 169 (2010). https://doi.org/10.1080/00268976.2010.530301 , Google ScholarCrossref
- 19. F. J. Blas, L. G. MacDowell, E. de Miguel, and G. Jackson, J. Chem. Phys. 129, 144703 (2008). https://doi.org/10.1063/1.2989115 , Google ScholarScitation, ISI
- 20. C. Vega and E. de Miguel, J. Chem. Phys. 126, 154707 (2007). https://doi.org/10.1063/1.2715577 , Google ScholarScitation, ISI
- 21. J. M. Míguez, D. González-Salgado, J. L. Legido, and M. M. Piñeiro, J. Chem. Phys. 132, 184102 (2010). https://doi.org/10.1063/1.3422528 , Google ScholarScitation, ISI
- 22. P. Orea, Y. Reyes-Mercado, and Y. Duda, Phys. Lett. A 372, 7024 (2008). https://doi.org/10.1016/j.physleta.2008.10.047 , Google ScholarCrossref, ISI
- 23. F. Biscay, A. Ghoufi, V. Lachet, and P. Malfreyt, J. Chem. Phys. 131, 124707 (2009). https://doi.org/10.1063/1.3236390 , Google ScholarScitation
- 24. Y. Hamada, K. Koga, and H. Tanaka, J. Chem. Phys. 127, 084908 (2007). https://doi.org/10.1063/1.2759926 , Google ScholarScitation
- 25. J. K. Singh and S. K. Kwak, J. Chem. Phys. 126, 024702 (2007). https://doi.org/10.1063/1.2424460 , Google ScholarScitation, ISI
- 26. S. K. Das and K. Binder, Mol. Phys. 109, 1043 (2011). https://doi.org/10.1080/00268976.2010.541890 , Google ScholarCrossref
- 27. L. D. Gelb, K. E. Gubbins, R. Radhakrishnan, and M. Sliwinska-Bartkowiak, Rep. Prog. Phys. 62, 1573 (1999). https://doi.org/10.1088/0034-4885/62/12/201 , Google ScholarCrossref, ISI
- 28. L. A. del Pino, A. L. Benavides, and A. Gil-Villegas, Mol. Simul. 29, 345 (2003). https://doi.org/10.1080/0892702031000117199 , Google ScholarCrossref
- 29. R. Evans, J. Phys.: Condens. Matter 2, 8989 (1990). https://doi.org/10.1088/0953-8984/2/46/001 , Google ScholarCrossref, ISI
- 30. B. Widom, J. Chem. Phys. 39, 2802 (1963). https://doi.org/10.1063/1.1734110 , Google ScholarScitation
- 31. J. H. Irving and J. G. Kirkwood, J. Chem. Phys. 18, 817 (1950). https://doi.org/10.1063/1.1747782 , Google ScholarScitation, ISI
- 32. R. Eppenga and D. Frenkel, Mol. Phys. 52, 1303 (1984). https://doi.org/10.1080/00268978400101951 , Google ScholarCrossref, ISI
- 33. V. I. Harismiadis, J. Vorholz, and A. Z. Panagiotopoulos, J. Chem. Phys. 105, 8469 (1996). https://doi.org/10.1063/1.472721 , Google ScholarScitation, ISI
- 34. E. de Miguel and G. Jackson, J. Chem. Phys. 125, 164109 (2006). https://doi.org/10.1063/1.2363381 , Google ScholarScitation, ISI
- 35. F. Biscay, A. Ghoufi, F. Goujon, V. Lachet, and P. Malfreyt, J. Chem. Phys. 130, 184710 (2009). https://doi.org/10.1063/1.3132708 , Google ScholarScitation, ISI
- 36. F. Biscay, A. Ghoufi, and P. Malfreyt, J. Phys. Chem. B 134, 044709 (2011). https://doi.org/10.1063/1.3544926 , Google ScholarScitation
- 37. A. Oleinikova and I. Brovchenko, Phys. Rev. E 76, 1 (2007). https://doi.org/10.1103/PhysRevE.76.041603 , Google ScholarCrossref
- 38. H. Dominguez, M. P. Allen, and R. Evans, Mol. Phys. 96, 209 (1999). https://doi.org/10.1080/00268979909482954 , Google ScholarCrossref
- 39. W. A. Steele, The Interaction of Gases with Solid Surfaces (Pergamon, 1974) . Google Scholar
- 40. D. Frenkel and B. Smit, Understanding Molecular Simulation (Academic, 2002). Google ScholarCrossref
- 41. J. M. Míguez, M. C. dos Ramos, M. M. Piñeiro, and F. J. Blas, J. Phys. Chem. B 115, 9604 (2011). https://doi.org/10.1021/jp2017488 , Google ScholarCrossref
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.