No Access Submitted: 14 January 2012 Accepted: 28 February 2012 Published Online: 20 March 2012
J. Chem. Phys. 136, 114707 (2012); https://doi.org/10.1063/1.3694533
more...View Affiliations
View Contributors
  • J. M. Míguez
  • M. M. Piñeiro
  • A. I. Moreno-Ventas Bravo
  • F. J. Blas
We propose the extension of the test-area methodology, originally proposed to evaluate the surface tension of planar fluid-fluid interfaces along a computer simulation in the canonical ensemble, to deal with the solid-fluid interfacial tension of systems adsorbed on slitlike pores using the grand canonical ensemble. In order to check the adequacy of the proposed extension, we apply the method for determining the density profiles and interfacial tension of spherical molecules adsorbed in slitlike pore with different pore sizes and solid-fluid dispersive energy parameters along the same simulation. We also calculate the solid-fluid interfacial tension using the original test-area method in the canonical ensemble. Agreement between the results obtained from both methods indicate that both methods are fully equivalent. The advantage of the new methodology is that allows to calculate simultaneously the density profiles and the amount of molecules adsorbed onto a slitlike pore, as well as the solid-fluid interfacial tension. This ensures that the chemical potential at which all properties are evaluated during the simulation is exactly the same since simulations can be performed in the grand canonical ensemble, mimicking the conditions at which the adsorption experiments are most usually carried out in the laboratory.
The authors would like to acknowledge helpful discussions with B. Mendiboure. This work was supported by Ministerio de Ciencia e Innovación (MICINN, Spain) through Grant Nos. FIS2010-14866, FIS2009-07923, and FPU Ref. AP2007-02172 (J.M.M.). Further financial support from Proyecto de Excelencia from Junta de Andalucía (Grant No. P07-FQM02884) and Universidad de Huelva are also acknowledged.
  1. 1. J. W. Cahn and J. E. Hilliard, J. Chem. Phys. 28, 258 (1958). https://doi.org/10.1063/1.1744102 , Google ScholarScitation, ISI
  2. 2. B. S. Carey, H. T. Davis, and L. E. Scriven, AIChE J. 26, 705 (1980). https://doi.org/10.1002/aic.690260502 , Google ScholarCrossref
  3. 3. C. Miqueu, B. Mendiboure, A. Gracia, and J. Lachaise, Fluid Phase Equilib. 218, 189 (2004). https://doi.org/10.1016/j.fluid.2003.12.008 , Google ScholarCrossref
  4. 4. C. Miqueu, B. Mendiboure, A. Gracia, and J. Lachaise, Ind. Eng. Chem. Res. 44, 3321 (2005). https://doi.org/10.1021/ie049086l , Google ScholarCrossref
  5. 5. G. Galliero, M. M. Piñeiro, B. Mendiboure, C. Miqueu, T. Lafitte, and D. Bessières, J. Chem. Phys. 130, 104704 (2009). https://doi.org/10.1063/1.3085716 , Google ScholarScitation, ISI
  6. 6. T. Lafitte, B. Mendiboure, M. M. Piñeiro, D. Bessières, and C. Miqueu, J. Phys. Chem. B 114, 11110 (2010). https://doi.org/10.1021/jp103292e , Google ScholarCrossref
  7. 7. C. Miqueu, J. M. Míguez, M. M. Piñeiro, T. Lafitte, and B. Mendiboure, J. Phys. Chem. B 115, 9618 (2011). https://doi.org/10.1021/jp202276k , Google ScholarCrossref
  8. 8. R. Evans, ‘‘Density functionals in the theory of nonuniform fluids,” Fundamentals of Inhomogeneous Fluids (Dekker, New York, 1992). Google Scholar
  9. 9. H. T. Davis, Statistical Mechanics of Phases, Interfaces and Thin Films (VCH, Weinhem, 1996) . Google Scholar
  10. 10. Y. Rosenfeld, Phys. Rev. Lett. 63, 980 (1989). https://doi.org/10.1103/PhysRevLett.63.980 , Google ScholarCrossref, ISI
  11. 11. Y. X. Yu and J. Z. Wu, J. Chem. Phys. 117, 2368 (2002). https://doi.org/10.1063/1.1491240 , Google ScholarScitation, ISI
  12. 12. Y. X. Yu and J. Z. Wu, J. Chem. Phys. 119, 2288 (2003). https://doi.org/10.1063/1.1584426 , Google ScholarScitation
  13. 13. F. Llovell, A. Galindo, F. J. Blas, and G. Jackson, J. Chem. Phys. 133, 024704 (2010). https://doi.org/10.1063/1.3449143 , Google ScholarScitation, ISI
  14. 14. E. de Miguel, J. Phys. Chem. B 112, 4674 (2008). https://doi.org/10.1021/jp7095983 , Google ScholarCrossref
  15. 15. L. G. MacDowell and P. Bryk, Phys. Rev. E 75, 061609 (2007). https://doi.org/10.1103/PhysRevE.75.061609 , Google ScholarCrossref, ISI
  16. 16. G. J. Gloor, G. Jackson, F. J. Blas, and E. de Miguel, J. Chem. Phys. 123, 134703 (2005). https://doi.org/10.1063/1.2038827 , Google ScholarScitation, ISI
  17. 17. E. de Miguel and G. Jackson, Mol. Phys. 104, 3717 (2006). https://doi.org/10.1080/00268970601095335 , Google ScholarCrossref, ISI
  18. 18. P. E. Brumby, A. J. Haslam, E. de Miguel, and G. Jackson, Mol. Phys. 109, 169 (2010). https://doi.org/10.1080/00268976.2010.530301 , Google ScholarCrossref
  19. 19. F. J. Blas, L. G. MacDowell, E. de Miguel, and G. Jackson, J. Chem. Phys. 129, 144703 (2008). https://doi.org/10.1063/1.2989115 , Google ScholarScitation, ISI
  20. 20. C. Vega and E. de Miguel, J. Chem. Phys. 126, 154707 (2007). https://doi.org/10.1063/1.2715577 , Google ScholarScitation, ISI
  21. 21. J. M. Míguez, D. González-Salgado, J. L. Legido, and M. M. Piñeiro, J. Chem. Phys. 132, 184102 (2010). https://doi.org/10.1063/1.3422528 , Google ScholarScitation, ISI
  22. 22. P. Orea, Y. Reyes-Mercado, and Y. Duda, Phys. Lett. A 372, 7024 (2008). https://doi.org/10.1016/j.physleta.2008.10.047 , Google ScholarCrossref, ISI
  23. 23. F. Biscay, A. Ghoufi, V. Lachet, and P. Malfreyt, J. Chem. Phys. 131, 124707 (2009). https://doi.org/10.1063/1.3236390 , Google ScholarScitation
  24. 24. Y. Hamada, K. Koga, and H. Tanaka, J. Chem. Phys. 127, 084908 (2007). https://doi.org/10.1063/1.2759926 , Google ScholarScitation
  25. 25. J. K. Singh and S. K. Kwak, J. Chem. Phys. 126, 024702 (2007). https://doi.org/10.1063/1.2424460 , Google ScholarScitation, ISI
  26. 26. S. K. Das and K. Binder, Mol. Phys. 109, 1043 (2011). https://doi.org/10.1080/00268976.2010.541890 , Google ScholarCrossref
  27. 27. L. D. Gelb, K. E. Gubbins, R. Radhakrishnan, and M. Sliwinska-Bartkowiak, Rep. Prog. Phys. 62, 1573 (1999). https://doi.org/10.1088/0034-4885/62/12/201 , Google ScholarCrossref, ISI
  28. 28. L. A. del Pino, A. L. Benavides, and A. Gil-Villegas, Mol. Simul. 29, 345 (2003). https://doi.org/10.1080/0892702031000117199 , Google ScholarCrossref
  29. 29. R. Evans, J. Phys.: Condens. Matter 2, 8989 (1990). https://doi.org/10.1088/0953-8984/2/46/001 , Google ScholarCrossref, ISI
  30. 30. B. Widom, J. Chem. Phys. 39, 2802 (1963). https://doi.org/10.1063/1.1734110 , Google ScholarScitation
  31. 31. J. H. Irving and J. G. Kirkwood, J. Chem. Phys. 18, 817 (1950). https://doi.org/10.1063/1.1747782 , Google ScholarScitation, ISI
  32. 32. R. Eppenga and D. Frenkel, Mol. Phys. 52, 1303 (1984). https://doi.org/10.1080/00268978400101951 , Google ScholarCrossref, ISI
  33. 33. V. I. Harismiadis, J. Vorholz, and A. Z. Panagiotopoulos, J. Chem. Phys. 105, 8469 (1996). https://doi.org/10.1063/1.472721 , Google ScholarScitation, ISI
  34. 34. E. de Miguel and G. Jackson, J. Chem. Phys. 125, 164109 (2006). https://doi.org/10.1063/1.2363381 , Google ScholarScitation, ISI
  35. 35. F. Biscay, A. Ghoufi, F. Goujon, V. Lachet, and P. Malfreyt, J. Chem. Phys. 130, 184710 (2009). https://doi.org/10.1063/1.3132708 , Google ScholarScitation, ISI
  36. 36. F. Biscay, A. Ghoufi, and P. Malfreyt, J. Phys. Chem. B 134, 044709 (2011). https://doi.org/10.1063/1.3544926 , Google ScholarScitation
  37. 37. A. Oleinikova and I. Brovchenko, Phys. Rev. E 76, 1 (2007). https://doi.org/10.1103/PhysRevE.76.041603 , Google ScholarCrossref
  38. 38. H. Dominguez, M. P. Allen, and R. Evans, Mol. Phys. 96, 209 (1999). https://doi.org/10.1080/00268979909482954 , Google ScholarCrossref
  39. 39. W. A. Steele, The Interaction of Gases with Solid Surfaces (Pergamon, 1974) . Google Scholar
  40. 40. D. Frenkel and B. Smit, Understanding Molecular Simulation (Academic, 2002). Google ScholarCrossref
  41. 41. J. M. Míguez, M. C. dos Ramos, M. M. Piñeiro, and F. J. Blas, J. Phys. Chem. B 115, 9604 (2011). https://doi.org/10.1021/jp2017488 , Google ScholarCrossref
  1. © 2012 American Institute of Physics.