ABSTRACT
A broadband microwave spectrometer has been constructed to determine the complex conductivity of thin metal films at frequencies from 45 MHz to 20 GHz working in the temperature range from 0.45 K to 2 K (in a 3He cryostat). The setup follows the Corbino approach: a vector network analyzer measures the complex reflection coefficient of a microwave signal hitting the sample as termination of a coaxial transmission line. As the calibration of the setup limits the achievable resolution, we discuss the sources of error hampering different types of calibration. Test measurements of the complex conductivity of a heavy-fermion material demonstrate the applicability of the calibration procedures.
ACKNOWLEDGMENTS
The authors thank Gabriele Untereiner for preparing the calibration and test samples. The UNi2Al3 sample was kindly provided by Martin Jourdan. For constructional advice and support we thank Jürgen Maurer and Günter Dietrich and for the design Elvira Ritz. Financial support by DFG and SFB/TRR21 is acknowledged.
- 1. J. Booth, D. H. Wu, and S. M. Anlage, Rev. Sci. Instrum. 65, 2082 (1994). https://doi.org/10.1063/1.1144816 , Google ScholarScitation, ISI
- 2. T. Ohashi, H. Kitano, A. Maeda, H. Akaike, and A. Fujimaki, Phys. Rev. B 73, 174522 (2006). https://doi.org/10.1103/PhysRevB.73.174522 , Google ScholarCrossref
- 3. K. Steinberg, M. Scheffler, and M. Dressel, Phys. Rev. B 77, 214517 (2008). https://doi.org/10.1103/PhysRevB.77.214517 , Google ScholarCrossref
- 4. N. Pompeo, E. Silva, S. Sarti, C. Attanasio, and C. Cirillo, Physica C 470, 901 (2010). https://doi.org/10.1016/j.physc.2010.02.063 , Google ScholarCrossref
- 5. D. H. Wu, J. C. Booth, and S. M. Anlage, Phys. Rev. Lett. 75, 525 (1995). https://doi.org/10.1103/PhysRevLett.75.525 , Google ScholarCrossref
- 6. J. C. Booth, D. H. Wu, S. B. Qadri, E. F. Skelton, M. S. Osofsky, A. Piqué, and S. M. Anlage, Phys. Rev. Lett. 77, 4438 (1996). https://doi.org/10.1103/PhysRevLett.77.4438 , Google ScholarCrossref, ISI
- 7. H. Kitano, T. Ohashi, H. Ryuzaki, A. Maeda, and I. Tsukada, Physica C 412, 130 (2004). https://doi.org/10.1016/j.physc.2003.11.066 , Google ScholarCrossref
- 8. M. Scheffler, M. Dressel, M. Jourdan, and H. Adrian, Nature (London) 438, 1135 (2005). https://doi.org/10.1038/nature04232 , Google ScholarCrossref
- 9. M. Scheffler, M. Dressel, and M. Jourdan, Eur. Phys. B 74, 331 (2010). https://doi.org/10.1140/epjb/e2010-00085-6 , Google ScholarCrossref
- 10. M. Scheffler and M. Dressel, Rev. Sci. Instrum. 76, 074702 (2005). https://doi.org/10.1063/1.1947881 , Google ScholarScitation, ISI
- 11. Our 4He Corbino spectrometer was originally equipped with copper coaxial cables: we reached a base temperature of 1.6 K and performed reliable microwave measurements down to 1.7 K.10 After replacement of the copper coaxial cables by stainless steel ones, we reach a typical base temperature slightly below 1.05 K, and we perform microwave measurements down to 1.1 K (Ref. 3). Google Scholar
- 12. D. M. Pozar, Microwave Engineering (Wiley, New York, 1998). Google Scholar
- 13. M. Scheffler, S. Kilic, and M. Dressel, Rev. Sci. Instrum. 78, 086106 (2007). https://doi.org/10.1063/1.2771088 , Google ScholarScitation, ISI
- 14. K. Steinberg, M. Scheffler, and M. Dressel, J. Appl. Phys. 108, 096102 (2010). https://doi.org/10.1063/1.3505706 , Google ScholarScitation, ISI
- 15. M. L. Stutzman, M. Lee, and R. F. Bradley, Rev. Sci. Instrum. 71, 4596 (2000). https://doi.org/10.1063/1.1322577 , Google ScholarScitation, ISI
- 16. H. Kitano, T. Ohashi, and A. Maeda, Rev. Sci. Instrum. 79, 074701 (2008). https://doi.org/10.1063/1.2954957 , Google ScholarScitation, ISI
- 17. M. Welte and W. Eisenmenger, Z. Phys. B: Condens. Matter 41, 301 (1981). https://doi.org/10.1007/BF01307319 , Google ScholarCrossref
- 18. F. Maier, K. Laßmann, Physica B 263, 122 (1999). https://doi.org/10.1016/S0921-4526(98)01310-6 , Google ScholarCrossref
- 19. K. Laßmann, C. Linsenmaier, F. Maier, F. Zeller, E. E. Haller, K. M. Itoh, L. I. Khirunenko, B. Pajot, and H. Müssig, Physica B 263, 384 (1999). https://doi.org/10.1016/S0921-4526(98)01391-X , Google ScholarCrossref
- 20. The 4He bath is pumped by combination of a roots pump (Type WKD 500A, Pfeiffer Balzers) and rotary pump (Type UNO 060A, Balzers) with a pumping speed of 490 m3/h reaching a base pressure of 0.12 mbar. The low temperatures in the 3He bath are reached by using a combination of booster pump (Type 9B3, Edwards) and a helium-tight rotary pump (Type DUO 060A, Balzers). The pressure of 3He, 4He, and exchange gas is monitored with Pirani sensors (Type THERMOVAC TTR 91, Leybold). Google Scholar
- 21. Type Helicoflex HN 100, Garlock Sealing Technologies. Google Scholar
- 22. Elastic contact springs, Feuerherdt GmbH. Google Scholar
- 23. Type 08 S 1121-K00 S3, Rosenberger Hochfrequenztechnik. Google Scholar
- 24. Type CX-1030-AA, Lakeshore. The sensor was calibrated by Lakeshore in the temperature range from 0.3 K up to 325 K. Google Scholar
- 25. Type M 370 AC impedance bridge, Lakeshore. Google Scholar
- 26. Type UT-085B-SS, Micro-Coax. Google Scholar
- 27. M. Jourdan, A. Zakharov, M. Foerster, and H. Adrian, Phys. Rev. Lett. 93, 097001 (2004). https://doi.org/10.1103/PhysRevLett.93.097001 , Google ScholarCrossref
- 28. M. Foerster, A. Zakharov, and M. Jourdan, Phys. Rev. B 76, 144519 (2007). https://doi.org/10.1103/PhysRevB.76.144519 , Google ScholarCrossref
- 29. M. Scheffler, M. Dressel, M. Jourdan, and H. Adrian, Physica B 378–380, 993 (2006). https://doi.org/10.1016/j.physb.2006.01.381 , Google ScholarCrossref
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.