No Access Submitted: 15 September 2011 Accepted: 09 January 2012 Published Online: 03 February 2012
Review of Scientific Instruments 83, 024704 (2012); https://doi.org/10.1063/1.3680576
more...View Affiliations
View Contributors
  • Katrin Steinberg
  • Marc Scheffler
  • Martin Dressel
A broadband microwave spectrometer has been constructed to determine the complex conductivity of thin metal films at frequencies from 45 MHz to 20 GHz working in the temperature range from 0.45 K to 2 K (in a 3He cryostat). The setup follows the Corbino approach: a vector network analyzer measures the complex reflection coefficient of a microwave signal hitting the sample as termination of a coaxial transmission line. As the calibration of the setup limits the achievable resolution, we discuss the sources of error hampering different types of calibration. Test measurements of the complex conductivity of a heavy-fermion material demonstrate the applicability of the calibration procedures.
The authors thank Gabriele Untereiner for preparing the calibration and test samples. The UNi2Al3 sample was kindly provided by Martin Jourdan. For constructional advice and support we thank Jürgen Maurer and Günter Dietrich and for the design Elvira Ritz. Financial support by DFG and SFB/TRR21 is acknowledged.
  1. 1. J. Booth, D. H. Wu, and S. M. Anlage, Rev. Sci. Instrum. 65, 2082 (1994). https://doi.org/10.1063/1.1144816 , Google ScholarScitation, ISI
  2. 2. T. Ohashi, H. Kitano, A. Maeda, H. Akaike, and A. Fujimaki, Phys. Rev. B 73, 174522 (2006). https://doi.org/10.1103/PhysRevB.73.174522 , Google ScholarCrossref
  3. 3. K. Steinberg, M. Scheffler, and M. Dressel, Phys. Rev. B 77, 214517 (2008). https://doi.org/10.1103/PhysRevB.77.214517 , Google ScholarCrossref
  4. 4. N. Pompeo, E. Silva, S. Sarti, C. Attanasio, and C. Cirillo, Physica C 470, 901 (2010). https://doi.org/10.1016/j.physc.2010.02.063 , Google ScholarCrossref
  5. 5. D. H. Wu, J. C. Booth, and S. M. Anlage, Phys. Rev. Lett. 75, 525 (1995). https://doi.org/10.1103/PhysRevLett.75.525 , Google ScholarCrossref
  6. 6. J. C. Booth, D. H. Wu, S. B. Qadri, E. F. Skelton, M. S. Osofsky, A. Piqué, and S. M. Anlage, Phys. Rev. Lett. 77, 4438 (1996). https://doi.org/10.1103/PhysRevLett.77.4438 , Google ScholarCrossref, ISI
  7. 7. H. Kitano, T. Ohashi, H. Ryuzaki, A. Maeda, and I. Tsukada, Physica C 412, 130 (2004). https://doi.org/10.1016/j.physc.2003.11.066 , Google ScholarCrossref
  8. 8. M. Scheffler, M. Dressel, M. Jourdan, and H. Adrian, Nature (London) 438, 1135 (2005). https://doi.org/10.1038/nature04232 , Google ScholarCrossref
  9. 9. M. Scheffler, M. Dressel, and M. Jourdan, Eur. Phys. B 74, 331 (2010). https://doi.org/10.1140/epjb/e2010-00085-6 , Google ScholarCrossref
  10. 10. M. Scheffler and M. Dressel, Rev. Sci. Instrum. 76, 074702 (2005). https://doi.org/10.1063/1.1947881 , Google ScholarScitation, ISI
  11. 11. Our 4He Corbino spectrometer was originally equipped with copper coaxial cables: we reached a base temperature of 1.6 K and performed reliable microwave measurements down to 1.7 K.10 After replacement of the copper coaxial cables by stainless steel ones, we reach a typical base temperature slightly below 1.05 K, and we perform microwave measurements down to 1.1 K (Ref. 3). Google Scholar
  12. 12. D. M. Pozar, Microwave Engineering (Wiley, New York, 1998). Google Scholar
  13. 13. M. Scheffler, S. Kilic, and M. Dressel, Rev. Sci. Instrum. 78, 086106 (2007). https://doi.org/10.1063/1.2771088 , Google ScholarScitation, ISI
  14. 14. K. Steinberg, M. Scheffler, and M. Dressel, J. Appl. Phys. 108, 096102 (2010). https://doi.org/10.1063/1.3505706 , Google ScholarScitation, ISI
  15. 15. M. L. Stutzman, M. Lee, and R. F. Bradley, Rev. Sci. Instrum. 71, 4596 (2000). https://doi.org/10.1063/1.1322577 , Google ScholarScitation, ISI
  16. 16. H. Kitano, T. Ohashi, and A. Maeda, Rev. Sci. Instrum. 79, 074701 (2008). https://doi.org/10.1063/1.2954957 , Google ScholarScitation, ISI
  17. 17. M. Welte and W. Eisenmenger, Z. Phys. B: Condens. Matter 41, 301 (1981). https://doi.org/10.1007/BF01307319 , Google ScholarCrossref
  18. 18. F. Maier, K. Laßmann, Physica B 263, 122 (1999). https://doi.org/10.1016/S0921-4526(98)01310-6 , Google ScholarCrossref
  19. 19. K. Laßmann, C. Linsenmaier, F. Maier, F. Zeller, E. E. Haller, K. M. Itoh, L. I. Khirunenko, B. Pajot, and H. Müssig, Physica B 263, 384 (1999). https://doi.org/10.1016/S0921-4526(98)01391-X , Google ScholarCrossref
  20. 20. The 4He bath is pumped by combination of a roots pump (Type WKD 500A, Pfeiffer Balzers) and rotary pump (Type UNO 060A, Balzers) with a pumping speed of 490 m3/h reaching a base pressure of 0.12 mbar. The low temperatures in the 3He bath are reached by using a combination of booster pump (Type 9B3, Edwards) and a helium-tight rotary pump (Type DUO 060A, Balzers). The pressure of 3He, 4He, and exchange gas is monitored with Pirani sensors (Type THERMOVAC TTR 91, Leybold). Google Scholar
  21. 21. Type Helicoflex HN 100, Garlock Sealing Technologies. Google Scholar
  22. 22. Elastic contact springs, Feuerherdt GmbH. Google Scholar
  23. 23. Type 08 S 1121-K00 S3, Rosenberger Hochfrequenztechnik. Google Scholar
  24. 24. Type CX-1030-AA, Lakeshore. The sensor was calibrated by Lakeshore in the temperature range from 0.3 K up to 325 K. Google Scholar
  25. 25. Type M 370 AC impedance bridge, Lakeshore. Google Scholar
  26. 26. Type UT-085B-SS, Micro-Coax. Google Scholar
  27. 27. M. Jourdan, A. Zakharov, M. Foerster, and H. Adrian, Phys. Rev. Lett. 93, 097001 (2004). https://doi.org/10.1103/PhysRevLett.93.097001 , Google ScholarCrossref
  28. 28. M. Foerster, A. Zakharov, and M. Jourdan, Phys. Rev. B 76, 144519 (2007). https://doi.org/10.1103/PhysRevB.76.144519 , Google ScholarCrossref
  29. 29. M. Scheffler, M. Dressel, M. Jourdan, and H. Adrian, Physica B 378–380, 993 (2006). https://doi.org/10.1016/j.physb.2006.01.381 , Google ScholarCrossref
  1. © 2012 American Institute of Physics.