No Access Submitted: 29 June 2011 Accepted: 27 September 2011 Published Online: 31 October 2011
Journal of Applied Physics 110, 081301 (2011); https://doi.org/10.1063/1.3651774
more...View Affiliations
View Contributors
  • M. Steger
  • A. Yang
  • T. Sekiguchi
  • K. Saeedi
  • M. L. W. Thewalt
  • M. O. Henry
  • K. Johnston
  • H. Riemann
  • N. V. Abrosimov
  • M. F. Churbanov
  • A. V. Gusev
  • A. K. Kaliteevskii
  • O. N. Godisov
  • P. Becker
  • H.-J. Pohl
Deep luminescence centers in Si associated with transition metals have been studied for decades, both as markers for these deleterious contaminants, as well as for the possibility of efficient Si-based light emission. They are among the most ubiquitous luminescence centers observed in Si, and have served as testbeds for elucidating the physics of isoelectronic bound excitons, and for testing ab-initio calculations of defect properties. The greatly improved spectral resolution resulting from the elimination of inhomogeneous isotope broadening in the recently available highly enriched 28Si enabled the extension of the established technique of isotope shifts to the measurement of isotopic fingerprints, which reveal not only the presence of a given element in a luminescence center, but also the number of atoms of that element. This has resulted in many surprises regarding the actual constituents of what were thought to be well-understood deep luminescence centers. Here we summarize the available information for four families of centers containing either four or five atoms chosen from (Li, Cu, Ag, Au, Pt). The no-phonon transition energies, their isotope shifts, and the local vibrational mode energies presented here for these deep centers should prove useful for the still-needed theoretical explanations of their formation, stability and properties.
This work was supported by NSERC. The authors would like to thank E. Alves and U. Wahl for Pt implantations and S. K. Estreicher, J. Weber, E. E. Haller, and G. Davies for helpful discussions.
  1. 1. R. H. Hopkins, R. G. Seidensticker, J. R. Davis, P. Rai-Choudhury, P. D. Blais, and J. R. McCormick, J. Cryst. Growth 42, 493 (1977). https://doi.org/10.1016/0022-0248(77)90236-6 , Google ScholarCrossref
  2. 2. A. Rohatgi, J. R. Davis, R. H. Hopkins, P. Rai-Choudhury, P. G. McMullin, and J. R. McCormick, Solid-State Electron. 23, 415 (1980). https://doi.org/10.1016/0038-1101(80)90076-3 , Google ScholarCrossref
  3. 3. K. Graff, Metal Impurities In Silicon-Device Fabrication (Springer, Berlin, 2000). Google ScholarCrossref
  4. 4. G. Davies, Phys. Scr. T54, 7 (1994). https://doi.org/10.1088/0031-8949/1994/T54/001 , Google ScholarCrossref
  5. 5. A. A. Istratov and E. R. Weber, J. Electrochem. Soc. 149, G21 (2002). https://doi.org/10.1149/1.1421348 , Google ScholarCrossref, ISI
  6. 6. T. G. Brown and D. G. Hall, Appl. Phys. Lett. 49, 245 (1986). https://doi.org/10.1063/1.97183 , Google ScholarScitation, ISI
  7. 7. N. S. Minaev, A. V. Mudryi, and V. D. Tkachev, Sov. Phys. Semicond. 13, 233 (1979). Google Scholar
  8. 8. J. Weber, H. Bauch, and R. Sauer, Phys. Rev. B 25, 7688 (1982). https://doi.org/10.1103/PhysRevB.25.7688 , Google ScholarCrossref, ISI
  9. 9. J. Weber and P. Wagner,J. Phys. Soc. Jpn. 49, 263 (1980). Google Scholar
  10. 10. M. Nakamura, S. Ishiwari, and A. Tanaka, Appl. Phys. Lett. 73, 2325 (1998). https://doi.org/10.1063/1.121811 , Google ScholarScitation, ISI
  11. 11. M. O. Henry, S. E. Daly, C. A. Frehill, E. McGlynn, and C. Mc-Donagh, “A Photoluminescence Study of Gold- and Platinum- Related Defects in Silicon using Radioactive Transformations,” in Physics of Semiconductors: 23rd International Conference on the Physics of Semiconductors-ICPS1996, edited by M. Scheffler and R. Zimmermann (World Scientific, Singapore, 1996), pp. 2713–2716. Google Scholar
  12. 12. H. B. Erzgräber and K. Schmalz, J. Appl. Phys. 78, 4066 (1995). https://doi.org/10.1063/1.359863 , Google ScholarScitation, ISI
  13. 13. E. R. Weber, Appl. Phys. A 30, 1 (1983). https://doi.org/10.1007/BF00617708 , Google ScholarCrossref
  14. 14. A. A. Istratov, H. Hieslmair, and E. R. Weber, Appl. Phys. A 70, 489 (2000). https://doi.org/10.1007/s003390051074 , Google ScholarCrossref
  15. 15. R. N. Hall and J. H. Racette, J. Appl. Phys. 35, 379 (1964). https://doi.org/10.1063/1.1713322 , Google ScholarScitation, ISI
  16. 16. D. E. Woon, D. S. Marynick, and S. K. Estreicher, Phys. Rev. B 45, 13383 (1992). https://doi.org/10.1103/PhysRevB.45.13383 , Google ScholarCrossref, ISI
  17. 17. A. A. Istratov, C. Flink, H. Hieslmair, E. R. Weber, and T. Heiser, Phys. Rev. Lett. 81, 1243 (1998). https://doi.org/10.1103/PhysRevLett.81.1243 , Google ScholarCrossref
  18. 18. K. Shirai, H. Yamaguchi, A. Yanase, and H. Katayama-Yoshida, J. Phys. Condens. Matter. 21, 064249 (2009). https://doi.org/10.1088/0953-8984/21/6/064249 , Google ScholarCrossref, ISI
  19. 19. K. Shirai, H. Yamaguchi, J. Ishisada, K. Matsukawa, A. Yanase, and S. Emura, AIP Conf. Proc. 1199, 91 (2010). https://doi.org/10.1063/1.3295569 , Google ScholarScitation
  20. 20. M. Nakamura, S. Murakami, N. J. Kawai, S. Saito, K. Matsukawa, and H. Arie, Jpn. J. Appl. Phys. 48, 082302 (2009). https://doi.org/10.1143/JJAP.48.082302 , Google ScholarCrossref
  21. 21. M. Nakamura and S. Murakami, Jpn. J. Appl. Phys. 49, 071302 (2010). https://doi.org/10.1143/JJAP.49.071302 , Google ScholarCrossref
  22. 22. M. Nakamura and S. Murakami, Appl. Phys. Lett. 98, 141909 (2011). https://doi.org/10.1063/1.3575574 , Google ScholarScitation, ISI
  23. 23. S. K. Estreicher and A. Carvalho, “The CuPL defect and the Cus1Cui3 complex,” Physica B (in press). https://doi.org/10.1016/j.physb.2011.08.002 , Google ScholarCrossref
  24. 24. A. Carvalho, D. J. Backlund, and S. K. Estreicher, “Four-copper complexes in Si and the CuPL defect: A first principles study,” Phys. Rev. B (in press). Google Scholar
  25. 25. J. R. Haynes, Phys. Rev. Lett. 4, 361 (1960). https://doi.org/10.1103/PhysRevLett.4.361 , Google ScholarCrossref, ISI
  26. 26. P. J. Dean, W. F. Flood, and G. Kaminsky, Phys. Rev. 163, 721 (1967). https://doi.org/10.1103/PhysRev.163.721 , Google ScholarCrossref
  27. 27. D. F. Nelson, J. D. Cuthbert, P. J. Dean, and D. G. Thomas, Phys. Rev. Lett. 17, 1262 (1966). https://doi.org/10.1103/PhysRevLett.17.1262 , Google ScholarCrossref
  28. 28. W. Schmid, Phys. Status Solidi B 84, 529 (1977). https://doi.org/10.1002/pssb.v84:2 , Google ScholarCrossref
  29. 29. P. J. Dean and D. C. Herbert, Bound Excitons in Semiconductors, Topics in Current Physics: Excitons (Springer, Berlin, 1979), p. 55. Google Scholar
  30. 30. M. L. W. Thewalt, Excitons, edited by E. I. Rashba and M. D. Sturge (North Holland, Amsterdam, 1982), pp. 393–458. Google Scholar
  31. 31. D. G. Thomas, J. J. Hopfield, and C. J. Frosch, Phys. Rev. Lett. 15, 857 (1965). https://doi.org/10.1103/PhysRevLett.15.857 , Google ScholarCrossref, ISI
  32. 32. J. J. Hopfield, D. G. Thomas, and R. T. Lynch, Phys. Rev. Lett. 17, 312 (1966). https://doi.org/10.1103/PhysRevLett.17.312 , Google ScholarCrossref, ISI
  33. 33. A. Baldereschi and J. J. Hopfield, Phys. Rev. Lett. 28, 171 (1972). https://doi.org/10.1103/PhysRevLett.28.171 , Google ScholarCrossref
  34. 34. R. Sauer and J. Weber, Physica B&C 116, 195 (1983). https://doi.org/10.1016/0378-4363(83)90248-6 , Google ScholarCrossref
  35. 35. E. C. Lightowlers and G. Davies, Solid State Commun. 53, 1055 (1985). https://doi.org/10.1016/0038-1098(85)90880-4 , Google ScholarCrossref
  36. 36. B. Monemar, U. Lindefelt, and W. M. Chen, Physica B&C 146, 256 (1987). https://doi.org/10.1016/0378-4363(87)90066-0 , Google ScholarCrossref
  37. 37. H. Conzelmann, Appl. Phys. A 42, 1 (1987). https://doi.org/10.1007/BF00618154 , Google ScholarCrossref
  38. 38. B. Monemar, Crit. Rev. Solid State Mater. Sci. 15, 111 (1988). https://doi.org/10.1080/10408438808243736 , Google ScholarCrossref
  39. 39. G. Davies, Phys. Rep. 176, 83 (1989). https://doi.org/10.1016/0370-1573(89)90064-1 , Google ScholarCrossref, ISI
  40. 40. J. Weber, W. Schmid, and R. Sauer, J. Lumin. 18-19, 93 (1979). https://doi.org/10.1016/0022-2313(79)90080-2 , Google ScholarCrossref
  41. 41. J. Weber, W. Schmid, and R. Sauer, Phys. Rev. B 21, 2401 (1980). https://doi.org/10.1103/PhysRevB.21.2401 , Google ScholarCrossref
  42. 42. R. Sauer, J. Weber, and W. Zulehner, Appl. Phys. Lett. 44, 440 (1984). https://doi.org/10.1063/1.94759 , Google ScholarScitation
  43. 43. J. Wagner and R. Sauer, Phys. Rev. B 26, 3502 (1982). https://doi.org/10.1103/PhysRevB.26.3502 , Google ScholarCrossref
  44. 44. R. A. Modavis and D. G. Hall, J. Appl. Phys. 67, 545 (1990). https://doi.org/10.1063/1.345242 , Google ScholarScitation, ISI
  45. 45. G. S. Mitchard, S. A. Lyon, K. R. Elliott, and T. C. McGill, Solid State Commun. 29, 425 (1979). https://doi.org/10.1016/0038-1098(79)91209-2 , Google ScholarCrossref
  46. 46. J. Weber, R. Sauer, and P. Wagner, J. Lumin. 24-25, 155 (1981). https://doi.org/10.1016/0022-2313(81)90241-6 , Google ScholarCrossref
  47. 47. M. L. W. Thewalt, U. O. Ziemelis, and P. R. Parsons, Solid State Commun. 39, 27 (1981). https://doi.org/10.1016/0038-1098(81)91040-1 , Google ScholarCrossref
  48. 48. M. L. W. Thewalt, U. O. Ziemelis, and R. R. Parsons, Phys. Rev. B 24, 3655 (1981). https://doi.org/10.1103/PhysRevB.24.3655 , Google ScholarCrossref
  49. 49. T. E. Schlesinger and T. C. McGill, Phys. Rev. B 25, 7850 (1982). https://doi.org/10.1103/PhysRevB.25.7850 , Google ScholarCrossref
  50. 50. S. P. Watkins, M. L. W. Thewalt, and T. Steiner Phys. Rev. B 29, 5727 (1984). https://doi.org/10.1103/PhysRevB.29.5727 , Google ScholarCrossref
  51. 51. H. Conzelmann, A. Hangleiter, and J. Weber, Phys. State Solidi B 133, 655 (1986). https://doi.org/10.1002/pssb.v133:2 , Google ScholarCrossref
  52. 52. T. E. Schlesinger, R. J. Hauenstein, R. M. Feenstra, and T. C. McGill, Solid State Commun. 46, 321 (1983). https://doi.org/10.1016/0038-1098(83)90661-0 , Google ScholarCrossref
  53. 53. M. O. Henry, E. C. Lightowlers, N. Killoran, D. J. Dunstan, and B. C. Cavenett, J. Phys. C 14, L255 (1981). https://doi.org/10.1088/0022-3719/14/10/002 , Google ScholarCrossref
  54. 54. R. K. Crouch, J. B. Robertson, and T. E. Gilmer, Phys. Rev. B 5, 3111 (1972). https://doi.org/10.1103/PhysRevB.5.3111 , Google ScholarCrossref
  55. 55. G. Davies, J. Phys. C 17, 6331 (1984). https://doi.org/10.1088/0022-3719/17/35/008 , Google ScholarCrossref
  56. 56. M. O. Henry, K. G. McGuigan, M. C. do Carmo, M. H. Nazare, and E. C. Lightowlers, J. Phys. Condens. Matter 2, 9697 (1990). https://doi.org/10.1088/0953-8984/2/48/023 , Google ScholarCrossref
  57. 57. M. O. Henry, K. A. Moloney, J. Treacy, F. J. Mulligan, and E. C. Lighowlers, J. Phys. C 17, 6245 (1984). https://doi.org/10.1088/0022-3719/17/34/024 , Google ScholarCrossref
  58. 58. T. Ishikawa, T. Sekiguchi, K. Yoshizawa, K. Naito, M. L. W. Thewalt, and K. M. Itoh, Solid State Commun. 150, 1827 (2010). https://doi.org/10.1016/j.ssc.2010.07.004 , Google ScholarCrossref
  59. 59. N. Killoran, D. J. Dunstan, M. O. Henry, E. C. Lightowlers, and B. C. Cavenett, J. Phys. C 15, 6067 (1982). https://doi.org/10.1088/0022-3719/15/29/018 , Google ScholarCrossref
  60. 60. S. Kim, I. P. Herman, K. L. Moore, D. G. Hall, and J. Bevk, Phys. Rev. B 52, 16309 (1995). https://doi.org/10.1103/PhysRevB.52.16309 , Google ScholarCrossref
  61. 61. S. Kim, I. P. Herman, K. L. Moore, D. G. Hall, and J. Bevk, Phys. Rev. B 53, 4434 (1996). https://doi.org/10.1103/PhysRevB.53.4434 , Google ScholarCrossref
  62. 62. D. Labrie, T. Timusk, and M. L. W. Thewalt, Phys. Rev. Lett. 52, 81 (1984). https://doi.org/10.1103/PhysRevLett.52.81 , Google ScholarCrossref
  63. 63. E. Tarnow, S. B. Zhang, K. J. Chang, and D. J. Chadi, Phys. Rev. B 42, 11252 (1990). https://doi.org/10.1103/PhysRevB.42.11252 , Google ScholarCrossref
  64. 64. M. L. W. Thewalt, S. P. Watkins, U. O. Ziemelis, E. C. Lightowlers, and M. O. Henry, Solid State Commun. 44, 573 (1982). https://doi.org/10.1016/0038-1098(82)90557-9 , Google ScholarCrossref
  65. 65. S. P. Watkins, U. O. Ziemelis, and M. L. W. Thewalt, Solid State Commun. 43, 687 (1982). https://doi.org/10.1016/0038-1098(82)90772-4 , Google ScholarCrossref
  66. 66. G. Davies, M. Zafar Iqbal, and E. C. Lightowlers, Phys. Rev. B 50, 11520 (1994). https://doi.org/10.1103/PhysRevB.50.11520 , Google ScholarCrossref
  67. 67. G. Davies and M. C. do Carmo, Inst. Phys. Conf. Ser. 95, 125 (1989). Google Scholar
  68. 68. S. K. Estreicher, Mater. Sci. Semicond. Process. 7, 101 (2004). https://doi.org/10.1016/j.mssp.2004.06.004 , Google ScholarCrossref
  69. 69. S. K. Estreicher, Phys. Rev. B 60, 5375 (1999). https://doi.org/10.1103/PhysRevB.60.5375 , Google ScholarCrossref
  70. 70. S. K. Estreicher, D. West, J. Goss, S. Knack, and J. Weber, Phys. Rev. Lett. 90, 035504 (2003). https://doi.org/10.1103/PhysRevLett.90.035504 , Google ScholarCrossref, ISI
  71. 71. S. K. Estreicher, D. West, J. M. Pruneda, S. Knack, and J. Weber, Mater. Res. Soc. Symp. Proc. 719, 421 (2002). Google ScholarCrossref
  72. 72. S. K. Estreicher, D. West, and M. Sanati, Phys. Rev. B 72, 121201 (2005). https://doi.org/10.1103/PhysRevB.72.121201 , Google ScholarCrossref
  73. 73. D. Karaiskaj, M. L. W. Thewalt, T. Ruf, M. Cardona, H.-J. Pohl, G. G. Deviatych, P. G. Sennikov, and H. Riemann, Phys. Rev. Lett. 86, 6010 (2001). https://doi.org/10.1103/PhysRevLett.86.6010 , Google ScholarCrossref
  74. 74. D. Karaiskaj, J. A. H. Stotz, T. Meyer, M. L. W. Thewalt, and M. Cardona, Phys. Rev. Lett. 90, 186402 (2003). https://doi.org/10.1103/PhysRevLett.90.186402 , Google ScholarCrossref
  75. 75. M. Cardona and M. L. W. Thewalt, Rev. Mod. Phys. 77, 1173 (2005). https://doi.org/10.1103/RevModPhys.77.1173 , Google ScholarCrossref, ISI
  76. 76. M. Steger, A. Yang, D. Karaiskaj, M. L. W. Thewalt, E. E. Haller, J. W. Ager III, M. Cardona, H. Riemann, N. V. Abrosimov, A. V. Gusev, A. D. Bulanov, A. K. Kaliteevskii, O. N. Godisov, P. Becker, H.-J. Pohl, and K. M. Itoh, AIP Conf. Proc. 893, 231 (2007). https://doi.org/10.1063/1.2729853 , Google ScholarScitation
  77. 77. M. Steger, A. Yang, D. Karaiskaj, M. L. W. Thewalt, E. E. Haller, J. W. Ager III, M. Cardona, H. Riemann, N. V. Abrosimov, A. V. Gusev, A. D. Bulanov, A. K. Kaliteevskii, O. N. Godisov, P. Becker, and H.-J. Pohl, Phys. Rev. B 79, 205210 (2009). https://doi.org/10.1103/PhysRevB.79.205210 , Google ScholarCrossref
  78. 78. M. Steger, A. Yang, M. L. W. Thewalt, M. Cardona, H. Riemann, N. V. Abrosimov, M. F. Churbanov, A. V. Gusev, A. D. Bulanov, I. D. Kovalev, A. K. Kaliteevskii, O. N. Godisov, P. Becker, H.-J. Pohl, J. W. Ager III, and E. E. Haller, Physica B 401-402, 600 (2007). https://doi.org/10.1016/j.physb.2007.09.031 , Google ScholarCrossref
  79. 79. M. Steger, A. Yang, M. L. W. Thewalt, M. Cardona, H. Riemann, N. V. Abrosimov, M. F. Churbanov, A. V. Gusev, A. D. Bulanov, I. D. Kovalev, A. K. Kaliteevskii, O. N. Godisov, P. Becker, H.-J. Pohl, E. E. Haller, and J. W. Ager III, Phys. Rev. B 80, 115204 (2009). https://doi.org/10.1103/PhysRevB.80.115204 , Google ScholarCrossref
  80. 80. M. L. W. Thewalt, Solid State Commun. 133, 715 (2005). https://doi.org/10.1016/j.ssc.2004.12.023 , Google ScholarCrossref
  81. 81. M. L. W. Thewalt, T. A. Meyer, D. Karaiskaj, M. Cardona, E. E. Haller, J. W. Ager III, and H. Riemann, AIP Conf. Proc. 772, 67 (2005). https://doi.org/10.1063/1.1993998 , Google ScholarScitation
  82. 82. T. Sekiguchi, M. Steger, K. Saeedi, M. L. W. Thewalt, H. Riemann, N. V. Abrosimov, and N. Nötzel, Phys. Rev. Lett. 104, 137402 (2010). https://doi.org/10.1103/PhysRevLett.104.137402 , Google ScholarCrossref
  83. 83. A. Yang, M. Steger, D. Karaiskaj, M. L. W. Thewalt, M. Cardona, K. M. Itoh, H. Riemann, N. V. Abrosimov, M. F. Churbanov, A. V. Gusev, A. D. Bulanov, A. K. Kaliteevskii, O. N. Godisov, P. Becker, H.-J. Pohl, J. W. Ager III, and E. E. Haller, Phys. Rev. Lett. 97, 227401 (2006). https://doi.org/10.1103/PhysRevLett.97.227401 , Google ScholarCrossref
  84. 84. M. L. W. Thewalt, A. Yang, M. Steger, D. Karaiskaj, M. Cardona, H. Riemann, N. V. Abrosimov, A. V. Gusev, A. D. Bulanov, I. D. Kovalev, A. K. Kaliteevskii, O. N. Godisov, P. Becker, H. J. Pohl, E. E. Haller, J. W. Ager III, and K. M. Itoh, J. Appl. Phys. 101, 081724 (2007). https://doi.org/10.1063/1.2723181 , Google ScholarScitation
  85. 85. A. Yang, M. Steger, T. Sekiguchi, M. L. W. Thewalt, T. D. Ladd, K. M. Itoh, H. Riemann, N. V. Abrosimov, P. Becker, and H.-J. Pohl, Phys. Rev. Lett. 102, 257401 (2009). https://doi.org/10.1103/PhysRevLett.102.257401 , Google ScholarCrossref
  86. 86. M. Steger, T. Sekiguchi, A. Yang, K. Saeedi, M. E. Hayden, M. L. W. Thewalt, K. M. Itoh, H. Riemann, N. V. Abrosimov, P. Becker, and H.-J. Pohl, J. Appl. Phys. 109, 102411 (2011). https://doi.org/10.1063/1.3577614 , Google ScholarScitation, ISI
  87. 87. M. L. W. Thewalt, M. Steger, A. Yang, M. Cardona, H. Riemann, N. V. Abrosimov, M. F. Churbanov, A. V. Gusev, A. D. Bulanov, I. D. Kovalev, A. K. Kaliteevskii, O. N. Godisov, P. Becker, and H.-J. Pohl, Physica B 401–402, 587 (2007). https://doi.org/10.1016/j.physb.2007.09.028 , Google ScholarCrossref, ISI
  88. 88. A. Yang, M. Steger, M. L. W. Thewalt, M. Cardona, H. Riemann, N. V. Abrosimov, M. F. Churbanov, A. V. Gusev, A. D. Bulanov, I. D. Kovalev, A. K. Kaliteevskii, O. N. Godisov, P. Becker, H.-J. Pohl, J. W. Ager III, and E. E. Haller, Physica B 401-402, 593 (2007). https://doi.org/10.1016/j.physb.2007.09.029 , Google ScholarCrossref
  89. 89. M. Steger, A. Yang, N. Stavrias, M. L. W. Thewalt, H. Riemann, N. V. Abrosimov, M. F. Churbanov, A. V. Gusev, A. D. Bulanov, I. D. Kovalev, A. K. Kaliteevskii, O. N. Godisov, P. Becker, and H.-J. Pohl, Phys. Rev. Lett. 100, 177402 (2008). https://doi.org/10.1103/PhysRevLett.100.177402 , Google ScholarCrossref
  90. 90. M. Steger, A. Yang, M. L. W. Thewalt, H. Riemann, N. V. Abrosimov, P. Becker, and H.-J. Pohl, AIP Conf. Proc. 1199, 33 (2010). https://doi.org/10.1063/1.3295441 , Google ScholarScitation
  91. 91. M. Steger, A. Yang, T. Sekiguchi, K. Saeedi, M. L. W. Thewalt, M. O. Henry, K. Johnston, H. Riemann, N. V. Abrosimov, M. F. Churbanov, A. V. Gusev, A. D. Bulanov, I. D. Kaliteevski, O. N. Godisov, P. Becker, and H.-J. Pohl, Physica B 404, 5050 (2009). https://doi.org/10.1016/j.physb.2009.08.240 , Google ScholarCrossref
  92. 92. M. Steger, A. Yang, T. Sekiguchi, K. Saeedi, M. L. W. Thewalt, M. O. Henry, K. Johnston, E. Alves, U. Wahl, H. Riemann, N. V. Abrosimov, M. F. Churbanov, A. V. Gusev, A. K. Kaliteevskii, O. N. Godisov, P. Becker, and H.-J. Pohl, Phys. Rev. B 81, 235217 (2010). https://doi.org/10.1103/PhysRevB.81.235217 , Google ScholarCrossref
  93. 93. V. Heine and C. H. Henry, Phys. Rev. B 11, 3795 (1975). https://doi.org/10.1103/PhysRevB.11.3795 , Google ScholarCrossref
  94. 94. E. S. Johnson, W. D. Compton, J. R. Noonan, and B. G. Streetman, J. Appl. Phys. 44, 5411 (1973). https://doi.org/10.1063/1.1662166 , Google ScholarScitation
  95. 95. L. Canham, G. Davies, and E. C. Lightowlers, J. Phys. C 13, L757 (1980). https://doi.org/10.1088/0022-3719/13/27/006 , Google ScholarCrossref
  96. 96. L. Canham, G. Davies, and E. C. Lightowlers, Inst. Phys. Conf. Ser. 59, 211 (1981). Google Scholar
  97. 97. R. Sauer and J. Weber, Solid State Commun. 49, 833 (1984). https://doi.org/10.1016/0038-1098(84)90091-7 , Google ScholarCrossref
  98. 98. S. D. Brotherton, J. R. Ayres, A. Gill, H. W. van Kesteren, and F. J. A. M. Greidanus, J. Appl. Phys. 62, 1826 (1987). https://doi.org/10.1063/1.339564 , Google ScholarScitation, ISI
  99. 99. M. H. Nazaré, A. J. Duarte, A. G. Steele, G. Davies, and E. C. Lightowlers, Mater. Sci. Forum 83-87, 191 (1992). https://doi.org/10.4028/www.scientific.net/MSF.83-87.191 , Google ScholarCrossref
  100. 100. A. A. Istratov, T. Heiser, H. Hieslmair, C. Flink, J. Krüger, and E. R. Weber, Mater. Sci. Forum 258-263, 467 (1997). https://doi.org/10.4028/www.scientific.net/MSF.258-263.467 , Google ScholarCrossref
  101. 101. A. A. Istratov, H. Hieslmair, T. Heiser, C. Flink, and E. R. Weber,” Appl. Phys. Lett. 72, 474 (1998). https://doi.org/10.1063/1.120790 , Google ScholarScitation, ISI
  102. 102. S. Knack, J. Weber, H. Lemke, and H. Riemann, Physica B 308–310, 404 (2001). https://doi.org/10.1016/S0921-4526(01)00763-3 , Google ScholarCrossref
  103. 103. S. Knack,” Mater. Sci. Semicond. Process. 7, 125 (2004). https://doi.org/10.1016/j.mssp.2004.06.002 , Google ScholarCrossref
  104. 104. M. Nakamura and H. Iwasaki, J. Appl. Phys. 86, 5372 (1999). https://doi.org/10.1063/1.371613 , Google ScholarScitation
  105. 105. M. Nakamura, Appl. Phys. Lett. 73, 3896 (1998). https://doi.org/10.1063/1.122928 , Google ScholarScitation, ISI
  106. 106. M. Nakamura, S. Murakami, H. Hozoji, N. J. Kawai, S. Saito, and H. Arie, Jpn. J. Appl. Phys. 45, L80 (2006). https://doi.org/10.1143/JJAP.45.L80 , Google ScholarCrossref
  107. 107. M. Nakamura, S. Murakami, N. J. Kawai, S. Saito, and H. Arie, Jpn. J. Appl. Phys. 47, 4398 (2008). https://doi.org/10.1143/JJAP.47.4398 , Google ScholarCrossref
  108. 108. M. Nakamura, J. Appl. Phys. 92, 6625 (2002). https://doi.org/10.1063/1.1521515 , Google ScholarScitation, ISI
  109. 109. M. Nakamura, H. Ohno, and S. Murakami, Jpn. J. Appl. Phys. 43, L1466 (2004). https://doi.org/10.1143/JJAP.43.L1466 , Google ScholarCrossref
  110. 110. D. West, S. K. Estreicher, S. Knack, and J. Weber, Phys. Rev. B 68, 035210 (2003). https://doi.org/10.1103/PhysRevB.68.035210 , Google ScholarCrossref
  111. 111. K. G. McGuigan, M. O. Henry, E. C. Lightowlers, A. G. Steele, and M. L. W. Thewalt, Solid State Commun. 68, 7 (1988). https://doi.org/10.1016/0038-1098(88)90234-7 , Google ScholarCrossref
  112. 112. K. G. McGuigan, M. O. Henry, M. C. Carmo, G. Davies, and E. C. Lightowlers, Mater. Sci. Eng., B 4, 269 (1989). https://doi.org/10.1016/0921-5107(89)90255-9 , Google ScholarCrossref
  113. 113. N. Q. Vinh, J. Phillips, G. Davies, and T. Gregorkiewicz, Phys. Rev. B 71, 085206 (2005). https://doi.org/10.1103/PhysRevB.71.085206 , Google ScholarCrossref
  114. 114. N. Q. Vinh and T. Gregorkiewicz, “Two - color mid-infrared spectroscopy of isoelectronic centers in silicon,” in MRS Proceedings, Vol. 770 (Cambridge University Press, 2003), p. I4–2. Google ScholarCrossref
  115. 115. J. Olajos, M. Kleverman, and H. G. Grimmeiss, Phys. Rev. B 38, 10633 (1988). https://doi.org/10.1103/PhysRevB.38.10633 , Google ScholarCrossref
  116. 116. M. H. Nazaré, M. C. Carmo, and A. J. Duarte, Mater. Sci. Eng., B 4, 273 (1989). https://doi.org/10.1016/0921-5107(89)90256-0 , Google ScholarCrossref
  117. 117. N. T. Son, M. Singh, J. Dalfors, B. Monemar, and E. Janzén, Phys. Rev. B 49, 17428 (1994). https://doi.org/10.1103/PhysRevB.49.17428 , Google ScholarCrossref
  118. 118. N. T. Son, V. E. Kustov, T. Gregorkiewicz, and C. A. J. Ammerlaan,” Phys. Rev. B 46, 4544 (1992). https://doi.org/10.1103/PhysRevB.46.4544 , Google ScholarCrossref
  119. 119. N. T. Son, T. Gregorkiewicz, and C. A. J. Ammerlaan, J. Appl. Phys. 73, 1797 (1993). https://doi.org/10.1063/1.353188 , Google ScholarScitation, ISI
  120. 120. M. Z. Iqbal, G. Davies, and E. C. Lightowlers, “Photoluminescence from silver-related defects in silicon,” in Defects in Semiconductors, ICDS-17, Materials Science Forum, Vol. 143, edited by H. Heinrich and W. Jantsch (Transtec Publications Ltd, 1994), pp. 773–777. Google ScholarCrossref
  121. 121. N. Q. Vinh, T. Gregorkiewicz, and K. Thonke, Phys. Rev. B 65, 033202 (2001). https://doi.org/10.1103/PhysRevB.65.033202 , Google ScholarCrossref
  122. 122. G. Davies, T. Gregorkiewicz, M. Zafar Iqbal, M. Kleverman, E. C. Lightowlers, N. Q. Vinh, and M. Zhu, Phys. Rev. B 67, 235111 (2003). https://doi.org/10.1103/PhysRevB.67.235111 , Google ScholarCrossref
  123. 123. M. C. do Carmo, M. I. Calão, G. Davies, and E. C. Lightowlers, “Photoluminescence from transition metals in silicon,” in Defects in Semiconductors (Trans Tech, Aedermannsdorf, 1989), p. 1497. Google ScholarCrossref
  124. 124. M. Singh, W. M. Chen, N. T. Son, B. Monemar, and E. Janzén, Solid State Commun. 93, 415 (1995). https://doi.org/10.1016/0038-1098(94)00809-4 , Google ScholarCrossref
  125. 125. M. O. Henry, E. Alves, J. Bollmann, A. Burchard, M. Deicher, M. Fanciulli, D. Forkel-Wirth, M. H. Knopf, S. Lindner, R. Magerle, R. McGlynn, K. G. McGuigan, J. C. Soares, A. Stotzler, and G. Weyer, Phys. Status Solidi B 210, 853 (1998). https://doi.org/10.1002/(SICI)1521-3951(199812)210:2<>1.0.CO;2-U , Google ScholarCrossref
  126. 126. M. O. Henry, E. McGlynn, J. Fryar, S. Lindner, and J. Bollmann, Nucl. Instrum. Methods Phys. Res. B 178, 256 (2001). https://doi.org/10.1016/S0168-583X(00)00474-2 , Google ScholarCrossref
  127. 127. T. E. Schlesinger and T. C. McGill, Phys. Rev. B 28, 3643 (1983). https://doi.org/10.1103/PhysRevB.28.3643 , Google ScholarCrossref
  128. 128. H. D. Mohring, J. Weber, and R. Sauer, Phys. Rev. B 30, 894 (1984). https://doi.org/10.1103/PhysRevB.30.894 , Google ScholarCrossref
  129. 129. J. Kluge, W. Gehlhoff, and J. Donecker, Acta Phys. Polonica A 73, 207 (1988). Google Scholar
  130. 130. M. O. Henry, M. Deicher, R. Magerle, E. McGlynn, and A. Stotzler, Hyperfine Interact. 129, 443 (2000). https://doi.org/10.1023/A:1012682421259 , Google ScholarCrossref
  131. 131. E. Alves, J. Bollmann, M. Deicher, M. C. Carmo, M. O. Henry, M. H. A. Knopf, J. P. Leitao, R. Magerle, and C. J. McDonagh, “The photoluminescence of Pt-implanted silicon,” in Defects in Semiconductors - ICDS-19, Materials Science Forum, Vol. 258-2, edited by G. Davies and M. H. Nazare (Transtec Publications LTD, 1997), pp. 473–478. Google ScholarCrossref
  132. 132. J. P. Leitão, M. C. Carmo, M. O. Henry, E. McGlynn, J. Bolmann, and S. Lindner, Physica B 273-274, 420 (1999). https://doi.org/10.1016/S0921-4526(99)00495-0 , Google ScholarCrossref
  133. 133. D. J. S. Beckett, M. K. Nissen, and M. L. W. Thewalt, Phys. Rev. B 40, 9618 (1989). https://doi.org/10.1103/PhysRevB.40.9618 , Google ScholarCrossref, ISI
  134. 134. M. Singh, E. C. Lightowlers, G. Davies, C. Jeynes, and K. J. Reeson, Mater. Sci. Eng. B 4, 303 (1989). https://doi.org/10.1016/0921-5107(89)90262-6 , Google ScholarCrossref
  135. 135. A. M. Frens, M. T. Bennebroek, J. Schmidt, W. M. Chen, and B. Monemar, Phys. Rev. B 46, 12316 (1992). https://doi.org/10.1103/PhysRevB.46.12316 , Google ScholarCrossref, ISI
  136. 136. P. W. Mason, H. J. Sun, B. Ittermann, S. S. Ostapenko, G. D. Watkins, L. Jeyanathan, M. Singh, G. Davies, and E. C. Lightowlers, Phys. Rev. B 58, 7007 (1998). https://doi.org/10.1103/PhysRevB.58.7007 , Google ScholarCrossref, ISI
  137. 137. A. M. Frens, M. E. Braat, J. Schmidt, W. M. Chen, and B. Monemar, Phys. Rev. B 52, 8848 (1995). https://doi.org/10.1103/PhysRevB.52.8848 , Google ScholarCrossref
  138. 138. P. L. Bradfield, T. G. Brown, and D. G. Hall, Phys. Rev. B 38, 3533 (1988). https://doi.org/10.1103/PhysRevB.38.3533 , Google ScholarCrossref, ISI
  139. 139. G. G. DeLeo, W. B. Fowler, and G. D. Watkins, Phys. Rev. B 29, 1819 (1984). https://doi.org/10.1103/PhysRevB.29.1819 , Google ScholarCrossref
  140. 140. E. C. Lightowlers, L. T. Canham, G. Davies, M. L. W. Thewalt, and S. P. Watkins, Phys. Rev. B 29, 4517 (1984). https://doi.org/10.1103/PhysRevB.29.4517 , Google ScholarCrossref
  141. 141. G. Davies, L. Canham, and E. C. Lightowlers, J. Phys. C 17, L173 (1984). https://doi.org/10.1088/0022-3719/17/6/003 , Google ScholarCrossref
  142. 142. E. Tarnow, J. Phys. Condens. Matter 4, 1459 (1992). https://doi.org/10.1088/0953-8984/4/6/010 , Google ScholarCrossref
  143. 143. L. Canham, G. Davies, E. C. Lightowlers, and G. W. Blackmore, Physica B 117&118, 119 (1983). Google ScholarCrossref
  144. 144. P. Becker, D. Schiel, H.-J. Pohl, A. K. Kaliteevski, O. N. Godisov, M. F. Churbanov, G. G. Devyatykh, A. V. Gusev, A. D. Bulanov, S. A. Adamchik, V. A. Gavva, I. D. Kovalev, N. V. Abrosimov, B. Hallmann- Seiffert, H. Riemann, S. Valkiers, P. Taylor, P. D. Bièvre, and E. M. Dianov, Meas. Sci. Technol. 17, 1854 (2006). https://doi.org/10.1088/0957-0233/17/7/025 , Google ScholarCrossref
  145. 145. P. Becker, H.-J. Pohl, H. Riemann, and N. Abrosimov, Phys. Status Solidi B 207, 49 (2010). https://doi.org/10.1002/pssa.200925148 , Google ScholarCrossref
  146. 146. J. P. Leitão, M. C. Carmo, M. O. Henry, and E. McGlynn, Phys. Rev. B 63, 235208 (2001). https://doi.org/10.1103/PhysRevB.63.235208 , Google ScholarCrossref
  147. 147. H. H. Woodbury and W. W. Tyler, Phys. Rev. 105, 84 (1957). https://doi.org/10.1103/PhysRev.105.84 , Google ScholarCrossref, ISI
  148. 148. M. K. Nissen, A. G. Steele, and M. L. W. Thewalt, Phys. Rev. B 41, 7926 (1990). https://doi.org/10.1103/PhysRevB.41.7926 , Google ScholarCrossref
  149. 149. N. Yarykin and J. Weber, Phys. Rev. B 83, 125207 (2011). https://doi.org/10.1103/PhysRevB.83.125207 , Google ScholarCrossref
  150. 150. A. A. Istratov, H. Hieslmair, C. Flink, T. Heiser, and E. R. Weber, 71, 2349 (1997). Google Scholar
  151. 151. A. Yang, M. Steger, M. L. W. Thewalt, T. D. Ladd, K. M. Itoh, E. E. Haller, J. W. Ager III, H. Riemann, N. V. Abrosimov, P. Becker, and H.-J. Pohl, AIP Conf. Proc. 1199, 375 (2010). https://doi.org/10.1063/1.3295458 , Google ScholarScitation
  152. 152. S. Simmons, R. M. Brown, H. Riemann, N. V. Abrosimov, P. Becker, H.-J. Pohl, M. L. W. Thewalt, K. M. Itoh, and J. J. L. Morton, Nature 470, 69 (2011). https://doi.org/10.1038/nature09696 , Google ScholarCrossref
  153. 153. M. O. Henry, K. G. McGuigan, and R. C. Barklie, Solid State Commun. 64, 31 (1987). https://doi.org/10.1016/0038-1098(87)90514-X , Google ScholarCrossref
  154. 154. M. O. Henry, D. J. Beckett, A. G. Steele, M. L. W. Thewalt, and K. G. McGuigan, Solid State Commun. 66, 689 (1988). https://doi.org/10.1016/0038-1098(88)90985-4 , Google ScholarCrossref
  155. 155. V. Thomas, J. Barrau, M. Brousseau, K. Kirouni, and G. Couloumiers, Phys. Status Solidi B 148, 723 (1988). https://doi.org/10.1002/pssb.v148:2 , Google ScholarCrossref
  156. 156. E. McGlynn, M. O. Henry, K. G. McGuigan, and M. C. doCarmo, Phys. Rev. B 54, 14494 (1996). https://doi.org/10.1103/PhysRevB.54.14494 , Google ScholarCrossref
  157. 157. A. Henry, B. Monemar, J. P. Bergman, J. L. Lindström, P. O. Holtz, Y. Zhang, and J. W. Corbett, Phys. Rev. B 47, 13309 (1993). https://doi.org/10.1103/PhysRevB.47.13309 , Google ScholarCrossref
  1. © 2011 American Institute of Physics.