ABSTRACT
Deep luminescence centers in Si associated with transition metals have been studied for decades, both as markers for these deleterious contaminants, as well as for the possibility of efficient Si-based light emission. They are among the most ubiquitous luminescence centers observed in Si, and have served as testbeds for elucidating the physics of isoelectronic bound excitons, and for testing ab-initio calculations of defect properties. The greatly improved spectral resolution resulting from the elimination of inhomogeneous isotope broadening in the recently available highly enriched 28Si enabled the extension of the established technique of isotope shifts to the measurement of isotopic fingerprints, which reveal not only the presence of a given element in a luminescence center, but also the number of atoms of that element. This has resulted in many surprises regarding the actual constituents of what were thought to be well-understood deep luminescence centers. Here we summarize the available information for four families of centers containing either four or five atoms chosen from (Li, Cu, Ag, Au, Pt). The no-phonon transition energies, their isotope shifts, and the local vibrational mode energies presented here for these deep centers should prove useful for the still-needed theoretical explanations of their formation, stability and properties.
ACKNOWLEDGMENTS
This work was supported by NSERC. The authors would like to thank E. Alves and U. Wahl for Pt implantations and S. K. Estreicher, J. Weber, E. E. Haller, and G. Davies for helpful discussions.
- 1. R. H. Hopkins, R. G. Seidensticker, J. R. Davis, P. Rai-Choudhury, P. D. Blais, and J. R. McCormick, J. Cryst. Growth 42, 493 (1977). https://doi.org/10.1016/0022-0248(77)90236-6 , Google ScholarCrossref
- 2. A. Rohatgi, J. R. Davis, R. H. Hopkins, P. Rai-Choudhury, P. G. McMullin, and J. R. McCormick, Solid-State Electron. 23, 415 (1980). https://doi.org/10.1016/0038-1101(80)90076-3 , Google ScholarCrossref
- 3. K. Graff, Metal Impurities In Silicon-Device Fabrication (Springer, Berlin, 2000). Google ScholarCrossref
- 4. G. Davies, Phys. Scr. T54, 7 (1994). https://doi.org/10.1088/0031-8949/1994/T54/001 , Google ScholarCrossref
- 5. A. A. Istratov and E. R. Weber, J. Electrochem. Soc. 149, G21 (2002). https://doi.org/10.1149/1.1421348 , Google ScholarCrossref, ISI
- 6. T. G. Brown and D. G. Hall, Appl. Phys. Lett. 49, 245 (1986). https://doi.org/10.1063/1.97183 , Google ScholarScitation, ISI
- 7. N. S. Minaev, A. V. Mudryi, and V. D. Tkachev, Sov. Phys. Semicond. 13, 233 (1979). Google Scholar
- 8. J. Weber, H. Bauch, and R. Sauer, Phys. Rev. B 25, 7688 (1982). https://doi.org/10.1103/PhysRevB.25.7688 , Google ScholarCrossref, ISI
- 9. J. Weber and P. Wagner,J. Phys. Soc. Jpn. 49, 263 (1980). Google Scholar
- 10. M. Nakamura, S. Ishiwari, and A. Tanaka, Appl. Phys. Lett. 73, 2325 (1998). https://doi.org/10.1063/1.121811 , Google ScholarScitation, ISI
- 11. M. O. Henry, S. E. Daly, C. A. Frehill, E. McGlynn, and C. Mc-Donagh, “A Photoluminescence Study of Gold- and Platinum- Related Defects in Silicon using Radioactive Transformations,” in Physics of Semiconductors: 23rd International Conference on the Physics of Semiconductors-ICPS1996, edited by M. Scheffler and R. Zimmermann (World Scientific, Singapore, 1996), pp. 2713–2716. Google Scholar
- 12. H. B. Erzgräber and K. Schmalz, J. Appl. Phys. 78, 4066 (1995). https://doi.org/10.1063/1.359863 , Google ScholarScitation, ISI
- 13. E. R. Weber, Appl. Phys. A 30, 1 (1983). https://doi.org/10.1007/BF00617708 , Google ScholarCrossref
- 14. A. A. Istratov, H. Hieslmair, and E. R. Weber, Appl. Phys. A 70, 489 (2000). https://doi.org/10.1007/s003390051074 , Google ScholarCrossref
- 15. R. N. Hall and J. H. Racette, J. Appl. Phys. 35, 379 (1964). https://doi.org/10.1063/1.1713322 , Google ScholarScitation, ISI
- 16. D. E. Woon, D. S. Marynick, and S. K. Estreicher, Phys. Rev. B 45, 13383 (1992). https://doi.org/10.1103/PhysRevB.45.13383 , Google ScholarCrossref, ISI
- 17. A. A. Istratov, C. Flink, H. Hieslmair, E. R. Weber, and T. Heiser, Phys. Rev. Lett. 81, 1243 (1998). https://doi.org/10.1103/PhysRevLett.81.1243 , Google ScholarCrossref
- 18. K. Shirai, H. Yamaguchi, A. Yanase, and H. Katayama-Yoshida, J. Phys. Condens. Matter. 21, 064249 (2009). https://doi.org/10.1088/0953-8984/21/6/064249 , Google ScholarCrossref, ISI
- 19. K. Shirai, H. Yamaguchi, J. Ishisada, K. Matsukawa, A. Yanase, and S. Emura, AIP Conf. Proc. 1199, 91 (2010). https://doi.org/10.1063/1.3295569 , Google ScholarScitation
- 20. M. Nakamura, S. Murakami, N. J. Kawai, S. Saito, K. Matsukawa, and H. Arie, Jpn. J. Appl. Phys. 48, 082302 (2009). https://doi.org/10.1143/JJAP.48.082302 , Google ScholarCrossref
- 21. M. Nakamura and S. Murakami, Jpn. J. Appl. Phys. 49, 071302 (2010). https://doi.org/10.1143/JJAP.49.071302 , Google ScholarCrossref
- 22. M. Nakamura and S. Murakami, Appl. Phys. Lett. 98, 141909 (2011). https://doi.org/10.1063/1.3575574 , Google ScholarScitation, ISI
- 23. S. K. Estreicher and A. Carvalho, “The CuPL defect and the Cus1Cui3 complex,” Physica B (in press). https://doi.org/10.1016/j.physb.2011.08.002 , Google ScholarCrossref
- 24. A. Carvalho, D. J. Backlund, and S. K. Estreicher, “Four-copper complexes in Si and the CuPL defect: A first principles study,” Phys. Rev. B (in press). Google Scholar
- 25. J. R. Haynes, Phys. Rev. Lett. 4, 361 (1960). https://doi.org/10.1103/PhysRevLett.4.361 , Google ScholarCrossref, ISI
- 26. P. J. Dean, W. F. Flood, and G. Kaminsky, Phys. Rev. 163, 721 (1967). https://doi.org/10.1103/PhysRev.163.721 , Google ScholarCrossref
- 27. D. F. Nelson, J. D. Cuthbert, P. J. Dean, and D. G. Thomas, Phys. Rev. Lett. 17, 1262 (1966). https://doi.org/10.1103/PhysRevLett.17.1262 , Google ScholarCrossref
- 28. W. Schmid, Phys. Status Solidi B 84, 529 (1977). https://doi.org/10.1002/pssb.v84:2 , Google ScholarCrossref
- 29. P. J. Dean and D. C. Herbert, Bound Excitons in Semiconductors, Topics in Current Physics: Excitons (Springer, Berlin, 1979), p. 55. Google Scholar
- 30. M. L. W. Thewalt, Excitons, edited by E. I. Rashba and M. D. Sturge (North Holland, Amsterdam, 1982), pp. 393–458. Google Scholar
- 31. D. G. Thomas, J. J. Hopfield, and C. J. Frosch, Phys. Rev. Lett. 15, 857 (1965). https://doi.org/10.1103/PhysRevLett.15.857 , Google ScholarCrossref, ISI
- 32. J. J. Hopfield, D. G. Thomas, and R. T. Lynch, Phys. Rev. Lett. 17, 312 (1966). https://doi.org/10.1103/PhysRevLett.17.312 , Google ScholarCrossref, ISI
- 33. A. Baldereschi and J. J. Hopfield, Phys. Rev. Lett. 28, 171 (1972). https://doi.org/10.1103/PhysRevLett.28.171 , Google ScholarCrossref
- 34. R. Sauer and J. Weber, Physica B&C 116, 195 (1983). https://doi.org/10.1016/0378-4363(83)90248-6 , Google ScholarCrossref
- 35. E. C. Lightowlers and G. Davies, Solid State Commun. 53, 1055 (1985). https://doi.org/10.1016/0038-1098(85)90880-4 , Google ScholarCrossref
- 36. B. Monemar, U. Lindefelt, and W. M. Chen, Physica B&C 146, 256 (1987). https://doi.org/10.1016/0378-4363(87)90066-0 , Google ScholarCrossref
- 37. H. Conzelmann, Appl. Phys. A 42, 1 (1987). https://doi.org/10.1007/BF00618154 , Google ScholarCrossref
- 38. B. Monemar, Crit. Rev. Solid State Mater. Sci. 15, 111 (1988). https://doi.org/10.1080/10408438808243736 , Google ScholarCrossref
- 39. G. Davies, Phys. Rep. 176, 83 (1989). https://doi.org/10.1016/0370-1573(89)90064-1 , Google ScholarCrossref, ISI
- 40. J. Weber, W. Schmid, and R. Sauer, J. Lumin. 18-19, 93 (1979). https://doi.org/10.1016/0022-2313(79)90080-2 , Google ScholarCrossref
- 41. J. Weber, W. Schmid, and R. Sauer, Phys. Rev. B 21, 2401 (1980). https://doi.org/10.1103/PhysRevB.21.2401 , Google ScholarCrossref
- 42. R. Sauer, J. Weber, and W. Zulehner, Appl. Phys. Lett. 44, 440 (1984). https://doi.org/10.1063/1.94759 , Google ScholarScitation
- 43. J. Wagner and R. Sauer, Phys. Rev. B 26, 3502 (1982). https://doi.org/10.1103/PhysRevB.26.3502 , Google ScholarCrossref
- 44. R. A. Modavis and D. G. Hall, J. Appl. Phys. 67, 545 (1990). https://doi.org/10.1063/1.345242 , Google ScholarScitation, ISI
- 45. G. S. Mitchard, S. A. Lyon, K. R. Elliott, and T. C. McGill, Solid State Commun. 29, 425 (1979). https://doi.org/10.1016/0038-1098(79)91209-2 , Google ScholarCrossref
- 46. J. Weber, R. Sauer, and P. Wagner, J. Lumin. 24-25, 155 (1981). https://doi.org/10.1016/0022-2313(81)90241-6 , Google ScholarCrossref
- 47. M. L. W. Thewalt, U. O. Ziemelis, and P. R. Parsons, Solid State Commun. 39, 27 (1981). https://doi.org/10.1016/0038-1098(81)91040-1 , Google ScholarCrossref
- 48. M. L. W. Thewalt, U. O. Ziemelis, and R. R. Parsons, Phys. Rev. B 24, 3655 (1981). https://doi.org/10.1103/PhysRevB.24.3655 , Google ScholarCrossref
- 49. T. E. Schlesinger and T. C. McGill, Phys. Rev. B 25, 7850 (1982). https://doi.org/10.1103/PhysRevB.25.7850 , Google ScholarCrossref
- 50. S. P. Watkins, M. L. W. Thewalt, and T. Steiner Phys. Rev. B 29, 5727 (1984). https://doi.org/10.1103/PhysRevB.29.5727 , Google ScholarCrossref
- 51. H. Conzelmann, A. Hangleiter, and J. Weber, Phys. State Solidi B 133, 655 (1986). https://doi.org/10.1002/pssb.v133:2 , Google ScholarCrossref
- 52. T. E. Schlesinger, R. J. Hauenstein, R. M. Feenstra, and T. C. McGill, Solid State Commun. 46, 321 (1983). https://doi.org/10.1016/0038-1098(83)90661-0 , Google ScholarCrossref
- 53. M. O. Henry, E. C. Lightowlers, N. Killoran, D. J. Dunstan, and B. C. Cavenett, J. Phys. C 14, L255 (1981). https://doi.org/10.1088/0022-3719/14/10/002 , Google ScholarCrossref
- 54. R. K. Crouch, J. B. Robertson, and T. E. Gilmer, Phys. Rev. B 5, 3111 (1972). https://doi.org/10.1103/PhysRevB.5.3111 , Google ScholarCrossref
- 55. G. Davies, J. Phys. C 17, 6331 (1984). https://doi.org/10.1088/0022-3719/17/35/008 , Google ScholarCrossref
- 56. M. O. Henry, K. G. McGuigan, M. C. do Carmo, M. H. Nazare, and E. C. Lightowlers, J. Phys. Condens. Matter 2, 9697 (1990). https://doi.org/10.1088/0953-8984/2/48/023 , Google ScholarCrossref
- 57. M. O. Henry, K. A. Moloney, J. Treacy, F. J. Mulligan, and E. C. Lighowlers, J. Phys. C 17, 6245 (1984). https://doi.org/10.1088/0022-3719/17/34/024 , Google ScholarCrossref
- 58. T. Ishikawa, T. Sekiguchi, K. Yoshizawa, K. Naito, M. L. W. Thewalt, and K. M. Itoh, Solid State Commun. 150, 1827 (2010). https://doi.org/10.1016/j.ssc.2010.07.004 , Google ScholarCrossref
- 59. N. Killoran, D. J. Dunstan, M. O. Henry, E. C. Lightowlers, and B. C. Cavenett, J. Phys. C 15, 6067 (1982). https://doi.org/10.1088/0022-3719/15/29/018 , Google ScholarCrossref
- 60. S. Kim, I. P. Herman, K. L. Moore, D. G. Hall, and J. Bevk, Phys. Rev. B 52, 16309 (1995). https://doi.org/10.1103/PhysRevB.52.16309 , Google ScholarCrossref
- 61. S. Kim, I. P. Herman, K. L. Moore, D. G. Hall, and J. Bevk, Phys. Rev. B 53, 4434 (1996). https://doi.org/10.1103/PhysRevB.53.4434 , Google ScholarCrossref
- 62. D. Labrie, T. Timusk, and M. L. W. Thewalt, Phys. Rev. Lett. 52, 81 (1984). https://doi.org/10.1103/PhysRevLett.52.81 , Google ScholarCrossref
- 63. E. Tarnow, S. B. Zhang, K. J. Chang, and D. J. Chadi, Phys. Rev. B 42, 11252 (1990). https://doi.org/10.1103/PhysRevB.42.11252 , Google ScholarCrossref
- 64. M. L. W. Thewalt, S. P. Watkins, U. O. Ziemelis, E. C. Lightowlers, and M. O. Henry, Solid State Commun. 44, 573 (1982). https://doi.org/10.1016/0038-1098(82)90557-9 , Google ScholarCrossref
- 65. S. P. Watkins, U. O. Ziemelis, and M. L. W. Thewalt, Solid State Commun. 43, 687 (1982). https://doi.org/10.1016/0038-1098(82)90772-4 , Google ScholarCrossref
- 66. G. Davies, M. Zafar Iqbal, and E. C. Lightowlers, Phys. Rev. B 50, 11520 (1994). https://doi.org/10.1103/PhysRevB.50.11520 , Google ScholarCrossref
- 67. G. Davies and M. C. do Carmo, Inst. Phys. Conf. Ser. 95, 125 (1989). Google Scholar
- 68. S. K. Estreicher, Mater. Sci. Semicond. Process. 7, 101 (2004). https://doi.org/10.1016/j.mssp.2004.06.004 , Google ScholarCrossref
- 69. S. K. Estreicher, Phys. Rev. B 60, 5375 (1999). https://doi.org/10.1103/PhysRevB.60.5375 , Google ScholarCrossref
- 70. S. K. Estreicher, D. West, J. Goss, S. Knack, and J. Weber, Phys. Rev. Lett. 90, 035504 (2003). https://doi.org/10.1103/PhysRevLett.90.035504 , Google ScholarCrossref, ISI
- 71. S. K. Estreicher, D. West, J. M. Pruneda, S. Knack, and J. Weber, Mater. Res. Soc. Symp. Proc. 719, 421 (2002). Google ScholarCrossref
- 72. S. K. Estreicher, D. West, and M. Sanati, Phys. Rev. B 72, 121201 (2005). https://doi.org/10.1103/PhysRevB.72.121201 , Google ScholarCrossref
- 73. D. Karaiskaj, M. L. W. Thewalt, T. Ruf, M. Cardona, H.-J. Pohl, G. G. Deviatych, P. G. Sennikov, and H. Riemann, Phys. Rev. Lett. 86, 6010 (2001). https://doi.org/10.1103/PhysRevLett.86.6010 , Google ScholarCrossref
- 74. D. Karaiskaj, J. A. H. Stotz, T. Meyer, M. L. W. Thewalt, and M. Cardona, Phys. Rev. Lett. 90, 186402 (2003). https://doi.org/10.1103/PhysRevLett.90.186402 , Google ScholarCrossref
- 75. M. Cardona and M. L. W. Thewalt, Rev. Mod. Phys. 77, 1173 (2005). https://doi.org/10.1103/RevModPhys.77.1173 , Google ScholarCrossref, ISI
- 76. M. Steger, A. Yang, D. Karaiskaj, M. L. W. Thewalt, E. E. Haller, J. W. Ager III, M. Cardona, H. Riemann, N. V. Abrosimov, A. V. Gusev, A. D. Bulanov, A. K. Kaliteevskii, O. N. Godisov, P. Becker, H.-J. Pohl, and K. M. Itoh, AIP Conf. Proc. 893, 231 (2007). https://doi.org/10.1063/1.2729853 , Google ScholarScitation
- 77. M. Steger, A. Yang, D. Karaiskaj, M. L. W. Thewalt, E. E. Haller, J. W. Ager III, M. Cardona, H. Riemann, N. V. Abrosimov, A. V. Gusev, A. D. Bulanov, A. K. Kaliteevskii, O. N. Godisov, P. Becker, and H.-J. Pohl, Phys. Rev. B 79, 205210 (2009). https://doi.org/10.1103/PhysRevB.79.205210 , Google ScholarCrossref
- 78. M. Steger, A. Yang, M. L. W. Thewalt, M. Cardona, H. Riemann, N. V. Abrosimov, M. F. Churbanov, A. V. Gusev, A. D. Bulanov, I. D. Kovalev, A. K. Kaliteevskii, O. N. Godisov, P. Becker, H.-J. Pohl, J. W. Ager III, and E. E. Haller, Physica B 401-402, 600 (2007). https://doi.org/10.1016/j.physb.2007.09.031 , Google ScholarCrossref
- 79. M. Steger, A. Yang, M. L. W. Thewalt, M. Cardona, H. Riemann, N. V. Abrosimov, M. F. Churbanov, A. V. Gusev, A. D. Bulanov, I. D. Kovalev, A. K. Kaliteevskii, O. N. Godisov, P. Becker, H.-J. Pohl, E. E. Haller, and J. W. Ager III, Phys. Rev. B 80, 115204 (2009). https://doi.org/10.1103/PhysRevB.80.115204 , Google ScholarCrossref
- 80. M. L. W. Thewalt, Solid State Commun. 133, 715 (2005). https://doi.org/10.1016/j.ssc.2004.12.023 , Google ScholarCrossref
- 81. M. L. W. Thewalt, T. A. Meyer, D. Karaiskaj, M. Cardona, E. E. Haller, J. W. Ager III, and H. Riemann, AIP Conf. Proc. 772, 67 (2005). https://doi.org/10.1063/1.1993998 , Google ScholarScitation
- 82. T. Sekiguchi, M. Steger, K. Saeedi, M. L. W. Thewalt, H. Riemann, N. V. Abrosimov, and N. Nötzel, Phys. Rev. Lett. 104, 137402 (2010). https://doi.org/10.1103/PhysRevLett.104.137402 , Google ScholarCrossref
- 83. A. Yang, M. Steger, D. Karaiskaj, M. L. W. Thewalt, M. Cardona, K. M. Itoh, H. Riemann, N. V. Abrosimov, M. F. Churbanov, A. V. Gusev, A. D. Bulanov, A. K. Kaliteevskii, O. N. Godisov, P. Becker, H.-J. Pohl, J. W. Ager III, and E. E. Haller, Phys. Rev. Lett. 97, 227401 (2006). https://doi.org/10.1103/PhysRevLett.97.227401 , Google ScholarCrossref
- 84. M. L. W. Thewalt, A. Yang, M. Steger, D. Karaiskaj, M. Cardona, H. Riemann, N. V. Abrosimov, A. V. Gusev, A. D. Bulanov, I. D. Kovalev, A. K. Kaliteevskii, O. N. Godisov, P. Becker, H. J. Pohl, E. E. Haller, J. W. Ager III, and K. M. Itoh, J. Appl. Phys. 101, 081724 (2007). https://doi.org/10.1063/1.2723181 , Google ScholarScitation
- 85. A. Yang, M. Steger, T. Sekiguchi, M. L. W. Thewalt, T. D. Ladd, K. M. Itoh, H. Riemann, N. V. Abrosimov, P. Becker, and H.-J. Pohl, Phys. Rev. Lett. 102, 257401 (2009). https://doi.org/10.1103/PhysRevLett.102.257401 , Google ScholarCrossref
- 86. M. Steger, T. Sekiguchi, A. Yang, K. Saeedi, M. E. Hayden, M. L. W. Thewalt, K. M. Itoh, H. Riemann, N. V. Abrosimov, P. Becker, and H.-J. Pohl, J. Appl. Phys. 109, 102411 (2011). https://doi.org/10.1063/1.3577614 , Google ScholarScitation, ISI
- 87. M. L. W. Thewalt, M. Steger, A. Yang, M. Cardona, H. Riemann, N. V. Abrosimov, M. F. Churbanov, A. V. Gusev, A. D. Bulanov, I. D. Kovalev, A. K. Kaliteevskii, O. N. Godisov, P. Becker, and H.-J. Pohl, Physica B 401–402, 587 (2007). https://doi.org/10.1016/j.physb.2007.09.028 , Google ScholarCrossref, ISI
- 88. A. Yang, M. Steger, M. L. W. Thewalt, M. Cardona, H. Riemann, N. V. Abrosimov, M. F. Churbanov, A. V. Gusev, A. D. Bulanov, I. D. Kovalev, A. K. Kaliteevskii, O. N. Godisov, P. Becker, H.-J. Pohl, J. W. Ager III, and E. E. Haller, Physica B 401-402, 593 (2007). https://doi.org/10.1016/j.physb.2007.09.029 , Google ScholarCrossref
- 89. M. Steger, A. Yang, N. Stavrias, M. L. W. Thewalt, H. Riemann, N. V. Abrosimov, M. F. Churbanov, A. V. Gusev, A. D. Bulanov, I. D. Kovalev, A. K. Kaliteevskii, O. N. Godisov, P. Becker, and H.-J. Pohl, Phys. Rev. Lett. 100, 177402 (2008). https://doi.org/10.1103/PhysRevLett.100.177402 , Google ScholarCrossref
- 90. M. Steger, A. Yang, M. L. W. Thewalt, H. Riemann, N. V. Abrosimov, P. Becker, and H.-J. Pohl, AIP Conf. Proc. 1199, 33 (2010). https://doi.org/10.1063/1.3295441 , Google ScholarScitation
- 91. M. Steger, A. Yang, T. Sekiguchi, K. Saeedi, M. L. W. Thewalt, M. O. Henry, K. Johnston, H. Riemann, N. V. Abrosimov, M. F. Churbanov, A. V. Gusev, A. D. Bulanov, I. D. Kaliteevski, O. N. Godisov, P. Becker, and H.-J. Pohl, Physica B 404, 5050 (2009). https://doi.org/10.1016/j.physb.2009.08.240 , Google ScholarCrossref
- 92. M. Steger, A. Yang, T. Sekiguchi, K. Saeedi, M. L. W. Thewalt, M. O. Henry, K. Johnston, E. Alves, U. Wahl, H. Riemann, N. V. Abrosimov, M. F. Churbanov, A. V. Gusev, A. K. Kaliteevskii, O. N. Godisov, P. Becker, and H.-J. Pohl, Phys. Rev. B 81, 235217 (2010). https://doi.org/10.1103/PhysRevB.81.235217 , Google ScholarCrossref
- 93. V. Heine and C. H. Henry, Phys. Rev. B 11, 3795 (1975). https://doi.org/10.1103/PhysRevB.11.3795 , Google ScholarCrossref
- 94. E. S. Johnson, W. D. Compton, J. R. Noonan, and B. G. Streetman, J. Appl. Phys. 44, 5411 (1973). https://doi.org/10.1063/1.1662166 , Google ScholarScitation
- 95. L. Canham, G. Davies, and E. C. Lightowlers, J. Phys. C 13, L757 (1980). https://doi.org/10.1088/0022-3719/13/27/006 , Google ScholarCrossref
- 96. L. Canham, G. Davies, and E. C. Lightowlers, Inst. Phys. Conf. Ser. 59, 211 (1981). Google Scholar
- 97. R. Sauer and J. Weber, Solid State Commun. 49, 833 (1984). https://doi.org/10.1016/0038-1098(84)90091-7 , Google ScholarCrossref
- 98. S. D. Brotherton, J. R. Ayres, A. Gill, H. W. van Kesteren, and F. J. A. M. Greidanus, J. Appl. Phys. 62, 1826 (1987). https://doi.org/10.1063/1.339564 , Google ScholarScitation, ISI
- 99. M. H. Nazaré, A. J. Duarte, A. G. Steele, G. Davies, and E. C. Lightowlers, Mater. Sci. Forum 83-87, 191 (1992). https://doi.org/10.4028/www.scientific.net/MSF.83-87.191 , Google ScholarCrossref
- 100. A. A. Istratov, T. Heiser, H. Hieslmair, C. Flink, J. Krüger, and E. R. Weber, Mater. Sci. Forum 258-263, 467 (1997). https://doi.org/10.4028/www.scientific.net/MSF.258-263.467 , Google ScholarCrossref
- 101. A. A. Istratov, H. Hieslmair, T. Heiser, C. Flink, and E. R. Weber,” Appl. Phys. Lett. 72, 474 (1998). https://doi.org/10.1063/1.120790 , Google ScholarScitation, ISI
- 102. S. Knack, J. Weber, H. Lemke, and H. Riemann, Physica B 308–310, 404 (2001). https://doi.org/10.1016/S0921-4526(01)00763-3 , Google ScholarCrossref
- 103. S. Knack,” Mater. Sci. Semicond. Process. 7, 125 (2004). https://doi.org/10.1016/j.mssp.2004.06.002 , Google ScholarCrossref
- 104. M. Nakamura and H. Iwasaki, J. Appl. Phys. 86, 5372 (1999). https://doi.org/10.1063/1.371613 , Google ScholarScitation
- 105. M. Nakamura, Appl. Phys. Lett. 73, 3896 (1998). https://doi.org/10.1063/1.122928 , Google ScholarScitation, ISI
- 106. M. Nakamura, S. Murakami, H. Hozoji, N. J. Kawai, S. Saito, and H. Arie, Jpn. J. Appl. Phys. 45, L80 (2006). https://doi.org/10.1143/JJAP.45.L80 , Google ScholarCrossref
- 107. M. Nakamura, S. Murakami, N. J. Kawai, S. Saito, and H. Arie, Jpn. J. Appl. Phys. 47, 4398 (2008). https://doi.org/10.1143/JJAP.47.4398 , Google ScholarCrossref
- 108. M. Nakamura, J. Appl. Phys. 92, 6625 (2002). https://doi.org/10.1063/1.1521515 , Google ScholarScitation, ISI
- 109. M. Nakamura, H. Ohno, and S. Murakami, Jpn. J. Appl. Phys. 43, L1466 (2004). https://doi.org/10.1143/JJAP.43.L1466 , Google ScholarCrossref
- 110. D. West, S. K. Estreicher, S. Knack, and J. Weber, Phys. Rev. B 68, 035210 (2003). https://doi.org/10.1103/PhysRevB.68.035210 , Google ScholarCrossref
- 111. K. G. McGuigan, M. O. Henry, E. C. Lightowlers, A. G. Steele, and M. L. W. Thewalt, Solid State Commun. 68, 7 (1988). https://doi.org/10.1016/0038-1098(88)90234-7 , Google ScholarCrossref
- 112. K. G. McGuigan, M. O. Henry, M. C. Carmo, G. Davies, and E. C. Lightowlers, Mater. Sci. Eng., B 4, 269 (1989). https://doi.org/10.1016/0921-5107(89)90255-9 , Google ScholarCrossref
- 113. N. Q. Vinh, J. Phillips, G. Davies, and T. Gregorkiewicz, Phys. Rev. B 71, 085206 (2005). https://doi.org/10.1103/PhysRevB.71.085206 , Google ScholarCrossref
- 114. N. Q. Vinh and T. Gregorkiewicz, “Two - color mid-infrared spectroscopy of isoelectronic centers in silicon,” in MRS Proceedings, Vol. 770 (Cambridge University Press, 2003), p. I4–2. Google ScholarCrossref
- 115. J. Olajos, M. Kleverman, and H. G. Grimmeiss, Phys. Rev. B 38, 10633 (1988). https://doi.org/10.1103/PhysRevB.38.10633 , Google ScholarCrossref
- 116. M. H. Nazaré, M. C. Carmo, and A. J. Duarte, Mater. Sci. Eng., B 4, 273 (1989). https://doi.org/10.1016/0921-5107(89)90256-0 , Google ScholarCrossref
- 117. N. T. Son, M. Singh, J. Dalfors, B. Monemar, and E. Janzén, Phys. Rev. B 49, 17428 (1994). https://doi.org/10.1103/PhysRevB.49.17428 , Google ScholarCrossref
- 118. N. T. Son, V. E. Kustov, T. Gregorkiewicz, and C. A. J. Ammerlaan,” Phys. Rev. B 46, 4544 (1992). https://doi.org/10.1103/PhysRevB.46.4544 , Google ScholarCrossref
- 119. N. T. Son, T. Gregorkiewicz, and C. A. J. Ammerlaan, J. Appl. Phys. 73, 1797 (1993). https://doi.org/10.1063/1.353188 , Google ScholarScitation, ISI
- 120. M. Z. Iqbal, G. Davies, and E. C. Lightowlers, “Photoluminescence from silver-related defects in silicon,” in Defects in Semiconductors, ICDS-17, Materials Science Forum, Vol. 143, edited by H. Heinrich and W. Jantsch (Transtec Publications Ltd, 1994), pp. 773–777. Google ScholarCrossref
- 121. N. Q. Vinh, T. Gregorkiewicz, and K. Thonke, Phys. Rev. B 65, 033202 (2001). https://doi.org/10.1103/PhysRevB.65.033202 , Google ScholarCrossref
- 122. G. Davies, T. Gregorkiewicz, M. Zafar Iqbal, M. Kleverman, E. C. Lightowlers, N. Q. Vinh, and M. Zhu, Phys. Rev. B 67, 235111 (2003). https://doi.org/10.1103/PhysRevB.67.235111 , Google ScholarCrossref
- 123. M. C. do Carmo, M. I. Calão, G. Davies, and E. C. Lightowlers, “Photoluminescence from transition metals in silicon,” in Defects in Semiconductors (Trans Tech, Aedermannsdorf, 1989), p. 1497. Google ScholarCrossref
- 124. M. Singh, W. M. Chen, N. T. Son, B. Monemar, and E. Janzén, Solid State Commun. 93, 415 (1995). https://doi.org/10.1016/0038-1098(94)00809-4 , Google ScholarCrossref
- 125. M. O. Henry, E. Alves, J. Bollmann, A. Burchard, M. Deicher, M. Fanciulli, D. Forkel-Wirth, M. H. Knopf, S. Lindner, R. Magerle, R. McGlynn, K. G. McGuigan, J. C. Soares, A. Stotzler, and G. Weyer, Phys. Status Solidi B 210, 853 (1998). https://doi.org/10.1002/(SICI)1521-3951(199812)210:2<>1.0.CO;2-U , Google ScholarCrossref
- 126. M. O. Henry, E. McGlynn, J. Fryar, S. Lindner, and J. Bollmann, Nucl. Instrum. Methods Phys. Res. B 178, 256 (2001). https://doi.org/10.1016/S0168-583X(00)00474-2 , Google ScholarCrossref
- 127. T. E. Schlesinger and T. C. McGill, Phys. Rev. B 28, 3643 (1983). https://doi.org/10.1103/PhysRevB.28.3643 , Google ScholarCrossref
- 128. H. D. Mohring, J. Weber, and R. Sauer, Phys. Rev. B 30, 894 (1984). https://doi.org/10.1103/PhysRevB.30.894 , Google ScholarCrossref
- 129. J. Kluge, W. Gehlhoff, and J. Donecker, Acta Phys. Polonica A 73, 207 (1988). Google Scholar
- 130. M. O. Henry, M. Deicher, R. Magerle, E. McGlynn, and A. Stotzler, Hyperfine Interact. 129, 443 (2000). https://doi.org/10.1023/A:1012682421259 , Google ScholarCrossref
- 131. E. Alves, J. Bollmann, M. Deicher, M. C. Carmo, M. O. Henry, M. H. A. Knopf, J. P. Leitao, R. Magerle, and C. J. McDonagh, “The photoluminescence of Pt-implanted silicon,” in Defects in Semiconductors - ICDS-19, Materials Science Forum, Vol. 258-2, edited by G. Davies and M. H. Nazare (Transtec Publications LTD, 1997), pp. 473–478. Google ScholarCrossref
- 132. J. P. Leitão, M. C. Carmo, M. O. Henry, E. McGlynn, J. Bolmann, and S. Lindner, Physica B 273-274, 420 (1999). https://doi.org/10.1016/S0921-4526(99)00495-0 , Google ScholarCrossref
- 133. D. J. S. Beckett, M. K. Nissen, and M. L. W. Thewalt, Phys. Rev. B 40, 9618 (1989). https://doi.org/10.1103/PhysRevB.40.9618 , Google ScholarCrossref, ISI
- 134. M. Singh, E. C. Lightowlers, G. Davies, C. Jeynes, and K. J. Reeson, Mater. Sci. Eng. B 4, 303 (1989). https://doi.org/10.1016/0921-5107(89)90262-6 , Google ScholarCrossref
- 135. A. M. Frens, M. T. Bennebroek, J. Schmidt, W. M. Chen, and B. Monemar, Phys. Rev. B 46, 12316 (1992). https://doi.org/10.1103/PhysRevB.46.12316 , Google ScholarCrossref, ISI
- 136. P. W. Mason, H. J. Sun, B. Ittermann, S. S. Ostapenko, G. D. Watkins, L. Jeyanathan, M. Singh, G. Davies, and E. C. Lightowlers, Phys. Rev. B 58, 7007 (1998). https://doi.org/10.1103/PhysRevB.58.7007 , Google ScholarCrossref, ISI
- 137. A. M. Frens, M. E. Braat, J. Schmidt, W. M. Chen, and B. Monemar, Phys. Rev. B 52, 8848 (1995). https://doi.org/10.1103/PhysRevB.52.8848 , Google ScholarCrossref
- 138. P. L. Bradfield, T. G. Brown, and D. G. Hall, Phys. Rev. B 38, 3533 (1988). https://doi.org/10.1103/PhysRevB.38.3533 , Google ScholarCrossref, ISI
- 139. G. G. DeLeo, W. B. Fowler, and G. D. Watkins, Phys. Rev. B 29, 1819 (1984). https://doi.org/10.1103/PhysRevB.29.1819 , Google ScholarCrossref
- 140. E. C. Lightowlers, L. T. Canham, G. Davies, M. L. W. Thewalt, and S. P. Watkins, Phys. Rev. B 29, 4517 (1984). https://doi.org/10.1103/PhysRevB.29.4517 , Google ScholarCrossref
- 141. G. Davies, L. Canham, and E. C. Lightowlers, J. Phys. C 17, L173 (1984). https://doi.org/10.1088/0022-3719/17/6/003 , Google ScholarCrossref
- 142. E. Tarnow, J. Phys. Condens. Matter 4, 1459 (1992). https://doi.org/10.1088/0953-8984/4/6/010 , Google ScholarCrossref
- 143. L. Canham, G. Davies, E. C. Lightowlers, and G. W. Blackmore, Physica B 117&118, 119 (1983). Google ScholarCrossref
- 144. P. Becker, D. Schiel, H.-J. Pohl, A. K. Kaliteevski, O. N. Godisov, M. F. Churbanov, G. G. Devyatykh, A. V. Gusev, A. D. Bulanov, S. A. Adamchik, V. A. Gavva, I. D. Kovalev, N. V. Abrosimov, B. Hallmann- Seiffert, H. Riemann, S. Valkiers, P. Taylor, P. D. Bièvre, and E. M. Dianov, Meas. Sci. Technol. 17, 1854 (2006). https://doi.org/10.1088/0957-0233/17/7/025 , Google ScholarCrossref
- 145. P. Becker, H.-J. Pohl, H. Riemann, and N. Abrosimov, Phys. Status Solidi B 207, 49 (2010). https://doi.org/10.1002/pssa.200925148 , Google ScholarCrossref
- 146. J. P. Leitão, M. C. Carmo, M. O. Henry, and E. McGlynn, Phys. Rev. B 63, 235208 (2001). https://doi.org/10.1103/PhysRevB.63.235208 , Google ScholarCrossref
- 147. H. H. Woodbury and W. W. Tyler, Phys. Rev. 105, 84 (1957). https://doi.org/10.1103/PhysRev.105.84 , Google ScholarCrossref, ISI
- 148. M. K. Nissen, A. G. Steele, and M. L. W. Thewalt, Phys. Rev. B 41, 7926 (1990). https://doi.org/10.1103/PhysRevB.41.7926 , Google ScholarCrossref
- 149. N. Yarykin and J. Weber, Phys. Rev. B 83, 125207 (2011). https://doi.org/10.1103/PhysRevB.83.125207 , Google ScholarCrossref
- 150. A. A. Istratov, H. Hieslmair, C. Flink, T. Heiser, and E. R. Weber, 71, 2349 (1997). Google Scholar
- 151. A. Yang, M. Steger, M. L. W. Thewalt, T. D. Ladd, K. M. Itoh, E. E. Haller, J. W. Ager III, H. Riemann, N. V. Abrosimov, P. Becker, and H.-J. Pohl, AIP Conf. Proc. 1199, 375 (2010). https://doi.org/10.1063/1.3295458 , Google ScholarScitation
- 152. S. Simmons, R. M. Brown, H. Riemann, N. V. Abrosimov, P. Becker, H.-J. Pohl, M. L. W. Thewalt, K. M. Itoh, and J. J. L. Morton, Nature 470, 69 (2011). https://doi.org/10.1038/nature09696 , Google ScholarCrossref
- 153. M. O. Henry, K. G. McGuigan, and R. C. Barklie, Solid State Commun. 64, 31 (1987). https://doi.org/10.1016/0038-1098(87)90514-X , Google ScholarCrossref
- 154. M. O. Henry, D. J. Beckett, A. G. Steele, M. L. W. Thewalt, and K. G. McGuigan, Solid State Commun. 66, 689 (1988). https://doi.org/10.1016/0038-1098(88)90985-4 , Google ScholarCrossref
- 155. V. Thomas, J. Barrau, M. Brousseau, K. Kirouni, and G. Couloumiers, Phys. Status Solidi B 148, 723 (1988). https://doi.org/10.1002/pssb.v148:2 , Google ScholarCrossref
- 156. E. McGlynn, M. O. Henry, K. G. McGuigan, and M. C. doCarmo, Phys. Rev. B 54, 14494 (1996). https://doi.org/10.1103/PhysRevB.54.14494 , Google ScholarCrossref
- 157. A. Henry, B. Monemar, J. P. Bergman, J. L. Lindström, P. O. Holtz, Y. Zhang, and J. W. Corbett, Phys. Rev. B 47, 13309 (1993). https://doi.org/10.1103/PhysRevB.47.13309 , Google ScholarCrossref
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.