No Access Submitted: 27 June 2011 Accepted: 26 July 2011 Published Online: 16 August 2011
Appl. Phys. Lett. 99, 071105 (2011);
more...View Affiliations
View Contributors
  • Gary Shambat
  • Bryan Ellis
  • Jan Petykiewicz
  • Marie A. Mayer
  • Tomas Sarmiento
  • James Harris
  • Eugene E. Haller
  • Jelena Vučković
We present results on electrically driven nanobeam photonic crystal cavities formed out of a lateral p-i-n junction in gallium arsenide. Despite their small conducting dimensions, nanobeams have robust electrical properties with high current densities possible at low drive powers. Much like their two-dimensional counterparts, the nanobeam cavities exhibit bright electroluminescence at room temperature from embedded 1250 nm InAs quantum dots. A small room temperature differential gain is observed in the cavities with minor beam self-heating suggesting that lasing is possible. These results open the door for efficient electrical control of active nanobeam cavities for diverse nanophotonic applications.
Gary Shambat and Bryan Ellis were supported by the Stanford Graduate Fellowship. Gary Shambat is also supported by the NSF GRFP. The authors acknowledge the financial support of the Interconnect Focus Center, one of the six research centers funded under the Focus Center Research Program, a Semiconductor Research Corporation program. We also acknowledge the AFOSR MURI for Complex and Robust On-chip Nanophotonics (Dr. Gernot Pomrenke), grant number FA9550-09-1-0704, and the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Work was performed in part at the Stanford Nanofabrication Facility of NNIN supported by the National Science Foundation. We also acknowledge Kelley Rivoire for assisting in SEM image acquisition.
  1. 1. M. Notomi, E. Kuramochi, and H. Taniyama, Opt. Express 16, 11095 (2008). , Google ScholarCrossref
  2. 2. Q. Quan, P. B. Deotare, and M. Loncar, Appl. Phys. Lett. 96, 203102 (2010). , Google ScholarScitation, ISI
  3. 3. I.W. Frank, P. B. Deotare, M. W. McCutcheon, and M. Loncar, Opt. Express 18, 8705 (2010). , Google ScholarCrossref
  4. 4. Y. Zhang, M. Khan, Y. Huang, J. H. Ryou, P. B. Deotare, R. Dupuis, and M. Loncar, Appl. Phys. Lett. 97, 051104 (2010). , Google ScholarScitation, ISI
  5. 5. Y. Gong, B. Ellis, G. Shambat, T. Sarmiento, J. S. Harris, and J. Vuckovic, Opt. Express 18, 5964 (2010). , Google ScholarCrossref
  6. 6. M. Eichenfield, J. Chan, R. Camacho, K. J. Vahala, and O. Painter, Nature (London) 462, 78 (2009). , Google ScholarCrossref
  7. 7. R. Ohta, Y. Ota, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, and Y. Arakawa, Appl. Phys. Lett. 98, 173104 (2011). , Google ScholarScitation, ISI
  8. 8. B. Wang, M. A. Dundar, R. Notzel, F. Karouta, S. He, and R. W. van der Heijden, Appl. Phys. Lett. 97, 151105 (2010). , Google ScholarScitation
  9. 9. B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, Nature Photon. 5, 297 (2011). , Google ScholarCrossref
  10. 10. Y. Akahane, T. Asano, B. S. Song, and S. Noda, Nature 425, 944 (2003). , Google ScholarCrossref
  11. 11. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Kahn, and M. Loncar, Appl. Phys. Lett. 94, 121106 (2009). , Google ScholarScitation, ISI
  12. 12. G. Shambat, B. Ellis, M. Mayer, A. Majumdar, E. E. Haller, and J. Vučković, Opt. Express 19, 7530 (2011). , Google ScholarCrossref
  13. 13. M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, Opt. Express 14, 6308 (2006). , Google ScholarCrossref
  14. 14. J. Talghader and J. S. Smith, Appl. Phys. Lett. 66, 335 (1995). , Google ScholarScitation, ISI
  1. © 2011 American Institute of Physics.