No Access
Published Online: 07 June 2011
Accepted: May 2011
Appl. Phys. Lett. 98, 231103 (2011); https://doi.org/10.1063/1.3597793
more...View Affiliations
We present a random number generation scheme that uses broadband measurements of the vacuum field contained in the radio-frequency sidebands of a single-mode laser. Even though the measurements may contain technical noise, we show that suitable algorithms can transform the digitized photocurrents into a string of random numbers that can be made arbitrarily correlated with a subset of the quantum fluctuations (high quantum correlation regime) or arbitrarily immune to environmental fluctuations (high environmental immunity). We demonstrate up to 2 Gbps of real time random number generation that were verified using standard randomness tests.
We thank QuintessenceLabs, M. Neharkar, and K. L. Chong for technical assistance. This research was conducted by the Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology (Project No. CE110001029).
  1. 1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys. 74, 145 (2002). https://doi.org/10.1103/RevModPhys.74.145, Google ScholarCrossref
  2. 2. S. Braunstein and P. van Loock, Rev. Mod. Phys. 77, 513 (2005). https://doi.org/10.1103/RevModPhys.77.513, Google ScholarCrossref
  3. 3. M. Isida and H. Ikeda, Ann. Inst. Stat. Math. 8, 119 (1956). https://doi.org/10.1007/BF02863577, Google ScholarCrossref
  4. 4. I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, Phys. Rev. Lett. 103, 024102 (2009). https://doi.org/10.1103/PhysRevLett.103.024102, Google ScholarCrossref
  5. 5. A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, Nat. Photonics 2, 728 (2008). https://doi.org/10.1038/nphoton.2008.227, Google ScholarCrossref
  6. 6. J. G. Rarity, P. C. M. Owens, and P. R. Tapster, J. Mod. Opt. 41, 2435 (1994). https://doi.org/10.1080/09500349414552281, Google ScholarCrossref
  7. 7. T. Jennewein, U. Achleitner, G. Weihs, H. Weinfurther, and A. Zeilinger, Rev. Sci. Instrum. 71, 1675 (2000). https://doi.org/10.1063/1.1150518, Google ScholarScitation
  8. 8. D. Wolfgang and E. Hildebrandt, U.S. Patent No. 6393448 B1 (21 May 2002). Google Scholar
  9. 9. A. Stefanov, N. Gisin, O. Guinnard, L. Guinnard, and H. Zbinden, J. Mod. Opt. https://doi.org/10.1080/09500340008233380 47, 595 (2000). Google ScholarCrossref
  10. 10. S. Pironio, A. Acn, S. Massar, A. B. de la Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, Nature (London) 464, 1021 (2010). https://doi.org/10.1038/nature09008, Google ScholarCrossref
  11. 11. J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, Appl. Phys. Lett. 93, 031109 (2008). https://doi.org/10.1063/1.2961000, Google ScholarScitation
  12. 12. A. Trifonov and H. Vig, U.S. Patent No. 7284024 B1 (16 October 2007). Google Scholar
  13. 13. C. Gabriel, C. Wittmann, D. Sych, R. Dong, W. Mauerer, U. L. Andersen, C. Marquardt, and G. Leuchs, Nat. Photonics 4, 711 (2010). https://doi.org/10.1038/nphoton.2010.197, Google ScholarCrossref
  14. 14. F. Gray, U.S. Patent No. 2632058 (17 March 1953). Google Scholar
  15. 15. NIST Statistical Test Suite-2.1, 2010. Google Scholar
  16. 16. G. Marsaglia, DIEHARD Battery of Tests of Randomness, 1995. Google Scholar
  17. © 2011 American Institute of Physics.