ABSTRACT
We present a random number generation scheme that uses broadband measurements of the vacuum field contained in the radio-frequency sidebands of a single-mode laser. Even though the measurements may contain technical noise, we show that suitable algorithms can transform the digitized photocurrents into a string of random numbers that can be made arbitrarily correlated with a subset of the quantum fluctuations (high quantum correlation regime) or arbitrarily immune to environmental fluctuations (high environmental immunity). We demonstrate up to 2 Gbps of real time random number generation that were verified using standard randomness tests.
We thank QuintessenceLabs, M. Neharkar, and K. L. Chong for technical assistance. This research was conducted by the Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology (Project No. CE110001029).
- 1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys. 74, 145 (2002). https://doi.org/10.1103/RevModPhys.74.145, Google ScholarCrossref
- 2. S. Braunstein and P. van Loock, Rev. Mod. Phys. 77, 513 (2005). https://doi.org/10.1103/RevModPhys.77.513, Google ScholarCrossref
- 3. M. Isida and H. Ikeda, Ann. Inst. Stat. Math. 8, 119 (1956). https://doi.org/10.1007/BF02863577, Google ScholarCrossref
- 4. I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, Phys. Rev. Lett. 103, 024102 (2009). https://doi.org/10.1103/PhysRevLett.103.024102, Google ScholarCrossref
- 5. A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, Nat. Photonics 2, 728 (2008). https://doi.org/10.1038/nphoton.2008.227, Google ScholarCrossref
- 6. J. G. Rarity, P. C. M. Owens, and P. R. Tapster, J. Mod. Opt. 41, 2435 (1994). https://doi.org/10.1080/09500349414552281, Google ScholarCrossref
- 7. T. Jennewein, U. Achleitner, G. Weihs, H. Weinfurther, and A. Zeilinger, Rev. Sci. Instrum. 71, 1675 (2000). https://doi.org/10.1063/1.1150518, Google ScholarScitation
- 8. D. Wolfgang and E. Hildebrandt, U.S. Patent No. 6393448 B1 (21 May 2002). Google Scholar
- 9. A. Stefanov, N. Gisin, O. Guinnard, L. Guinnard, and H. Zbinden, J. Mod. Opt. https://doi.org/10.1080/09500340008233380 47, 595 (2000). Google ScholarCrossref
- 10. S. Pironio, A. Acn, S. Massar, A. B. de la Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, Nature (London) 464, 1021 (2010). https://doi.org/10.1038/nature09008, Google ScholarCrossref
- 11. J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, Appl. Phys. Lett. 93, 031109 (2008). https://doi.org/10.1063/1.2961000, Google ScholarScitation
- 12. A. Trifonov and H. Vig, U.S. Patent No. 7284024 B1 (16 October 2007). Google Scholar
- 13. C. Gabriel, C. Wittmann, D. Sych, R. Dong, W. Mauerer, U. L. Andersen, C. Marquardt, and G. Leuchs, Nat. Photonics 4, 711 (2010). https://doi.org/10.1038/nphoton.2010.197, Google ScholarCrossref
- 14. F. Gray, U.S. Patent No. 2632058 (17 March 1953). Google Scholar
- 15. NIST Statistical Test Suite-2.1, 2010. Google Scholar
- 16. G. Marsaglia, DIEHARD Battery of Tests of Randomness, 1995. Google Scholar
- © 2011 American Institute of Physics.
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.

