ABSTRACT
Bismuth-based ferroelectric ceramics are currently under intense investigation for their potential as Pb-free alternatives to lead zirconate titanate-based piezoelectrics. (NBT), one of the widely studied compositions, has been assumed thus far to exhibit the rhombohedral space group at room temperature. High-resolution powder x-ray diffraction patterns, however, reveal peak splitting in the room temperature phase that evidence the true structure as monoclinic with space group . This peak splitting and space group is only revealed in sintered powders; calcined powders are equally fit to an model because microstructural contributions to peak broadening obscure the peak splitting.
E.A. acknowledges partial support for this work by the U.S. National Science Foundation (NSF) under Award No. DMR-0746902. J.F. and J.J. acknowledge support from the U.S. Department of the Army under Grant No. W911NF-09-1-0435. Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The authors thank Dr. Graham King for helpful discussions.
- 1. G. O. Jones and P. A. Thomas, Acta Crystallogr., Sect. B: Struct. Sci. 58, 168 (2002). https://doi.org/10.1107/S0108768101020845, Google ScholarCrossref
- 2. S. B. Vakhrushev, B. E. Kvyatkovskii, R. S. Malysheva, N. M. Okuneva, and P. P. Syrnikov, Sov. Phys. Solid State 27, 455 (1985). Google Scholar
- 3. S. Gorfman and P. A. Thomas, J. Appl. Crystallogr. 43, 1409 (2010). https://doi.org/10.1107/S002188981003342X, Google ScholarCrossref, ISI
- 4. I. P. Pronin, P. P. Syrnikov, V. A. Isupov, V. M. Egorov, N. V. Zaitseva, and A. F. Ioffe, Ferroelectrics 25, 395 (1980). https://doi.org/10.1080/00150198008207029, Google ScholarCrossref, ISI
- 5. V. Dorcet, G. Trolliard, and P. Boullay, Chem. Mater. 20, 5061 (2008). https://doi.org/10.1021/cm8004634, Google ScholarCrossref, ISI
- 6. V. Dorcet and G. Trolliard, Chem. Mater. 20, 5074 (2008). https://doi.org/10.1021/cm800464d, Google ScholarCrossref
- 7. M. Davies, E. Aksel, and J. L. Jones, “Enhanced high-temperature piezoelectric coefficients and thermal stability of Fe- and Mn-substituted ceramics,” J. Am. Ceram. Soc. (in press). https://doi.org/10.1111/j.1551–2916.2011.04441.x, Google Scholar
- 8. J. Wang, B. Toby, P. L. Lee, L. Ribaud, S. M. Antao, C. Kurtz, M. Ramanathan, R. B. von Dreele, and M. A. Beno, Rev. Sci. Instrum. 79, 085105 (2008). https://doi.org/10.1063/1.2969260, Google ScholarScitation, ISI
- 9. P. L. Lee, D. Shu, M. Ramanathan, C. Preissner, J. Wang, M. A. Beno, R. B. Von Dreele, L. Ribaud, C. Kurtz, S. M. Antao, X. Jiao, and B. H. Toby, J. Synchrotron Radiat. 15, 427 (2008). https://doi.org/10.1107/S0909049508018438, Google ScholarCrossref
- 10. A. C. Larson and R. B. Von Dreele, Los Alamos National Laboratory Report No. LAUR 86-748, 2004 (unpublished). Google Scholar
- 11. See supplementary material at http://dx.doi.org/10.1063/1.3573826 for all refinement outputs and quality of fit indicators in Tables S.I-S.III. Google Scholar
- 12. Y. S. Sung, J. M. Kim, J. H. Cho, T. K. Song, M. H. Kim, and T. G. Park, Appl. Phys. Lett. 98, 012902 (2011). https://doi.org/10.1063/1.3525370, Google ScholarScitation, ISI
- 13. I. Barin, Thermochemical Data of Pure Substances, 3rd ed. (Wiley, Weinheim, Germany, 2008), Chap. 12. Google Scholar
- 14. D. Pandey, A. K. Singh, and S. Baik, Acta Crystallogr., Sect. A: Found. Crystallogr. 64, 192 (2008). https://doi.org/10.1107/S0108767307055511, Google ScholarCrossref
- 15. H. T. Stokes, E. H. Kisi, D. M. Hatch, and C. J. Howard, Acta Crystallogr., Sect. B: Struct. Sci. 58, 934 (2002). https://doi.org/10.1107/S0108768102015756, Google ScholarCrossref
- 16. A. M. Glazer, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 28, 3384 (1972). https://doi.org/10.1107/S0567740872007976, Google ScholarCrossref
- 17. H. Yokota, N. Zhang, A. E. Taylor, P. A. Thomas, and A. M. Glazer, Phys. Rev. B 80, 104109 (2009). https://doi.org/10.1103/PhysRevB.80.104109, Google ScholarCrossref
- 18. R. Ranjan A. K. Singh, Ragini, and D. Pandey, Phys. Rev. B 71, 092101 (2005). https://doi.org/10.1103/PhysRevB.71.092101, Google ScholarCrossref
- 19. B. Noheda, D. E. Cox, G. Shirane, R. Guo, B. Jones, and L. E. Cross, Phys. Rev. B 63, 014103 (2000). https://doi.org/10.1103/PhysRevB.63.014103, Google ScholarCrossref, ISI
- 20. J. M. Kiat, Y. Uesu, B. Dkhil, M. Matsuda, C. Malibert, and G. Calvarin, Phys. Rev. B 65, 064106 (2002). https://doi.org/10.1103/PhysRevB.65.064106, Google ScholarCrossref, ISI
- 21. G. A. Smolenskii, V. A. Isupov, A. I. Agranovskaya, and N. N. Krainik, Sov. Phys. Solid State 2, 2651 (1961). Google Scholar
- 22. D. Damjanovic, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 1574 (2009). https://doi.org/10.1109/TUFFC.2009.1222, Google ScholarCrossref, ISI
- 23. T. Takenaka, K. Maruyama, and K. Sakata, Jpn. J. Appl. Phys., Part 1 30, 2236 (1991). https://doi.org/10.1143/JJAP.30.2236, Google ScholarCrossref, ISI
- 24. W. Jo, J. E. Daniels, J. L. Jones, X. Tan, P. A. Thomas, D. Damjanovic, and J. Roedel, J. Appl. Phys. 109, 014110 (2011). https://doi.org/10.1063/1.3530737, Google ScholarScitation, ISI
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.