No Access Submitted: 06 November 2010 Accepted: 01 March 2011 Published Online: 11 April 2011
Appl. Phys. Lett. 98, 152901 (2011); https://doi.org/10.1063/1.3573826
more...View Affiliations
View Contributors
  • Elena Aksel
  • Jennifer S. Forrester
  • Jacob L. Jones
  • Pam A. Thomas
  • Katharine Page
  • Matthew R. Suchomel
Bismuth-based ferroelectric ceramics are currently under intense investigation for their potential as Pb-free alternatives to lead zirconate titanate-based piezoelectrics. Na0.5Bi0.5TiO3 (NBT), one of the widely studied compositions, has been assumed thus far to exhibit the rhombohedral space group R3c at room temperature. High-resolution powder x-ray diffraction patterns, however, reveal peak splitting in the room temperature phase that evidence the true structure as monoclinic with space group Cc. This peak splitting and Cc space group is only revealed in sintered powders; calcined powders are equally fit to an R3c model because microstructural contributions to peak broadening obscure the peak splitting.
E.A. acknowledges partial support for this work by the U.S. National Science Foundation (NSF) under Award No. DMR-0746902. J.F. and J.J. acknowledge support from the U.S. Department of the Army under Grant No. W911NF-09-1-0435. Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The authors thank Dr. Graham King for helpful discussions.
  1. 1. G. O. Jones and P. A. Thomas, Acta Crystallogr., Sect. B: Struct. Sci. 58, 168 (2002). https://doi.org/10.1107/S0108768101020845, Google ScholarCrossref
  2. 2. S. B. Vakhrushev, B. E. Kvyatkovskii, R. S. Malysheva, N. M. Okuneva, and P. P. Syrnikov, Sov. Phys. Solid State 27, 455 (1985). Google Scholar
  3. 3. S. Gorfman and P. A. Thomas, J. Appl. Crystallogr. 43, 1409 (2010). https://doi.org/10.1107/S002188981003342X, Google ScholarCrossref, ISI
  4. 4. I. P. Pronin, P. P. Syrnikov, V. A. Isupov, V. M. Egorov, N. V. Zaitseva, and A. F. Ioffe, Ferroelectrics 25, 395 (1980). https://doi.org/10.1080/00150198008207029, Google ScholarCrossref, ISI
  5. 5. V. Dorcet, G. Trolliard, and P. Boullay, Chem. Mater. 20, 5061 (2008). https://doi.org/10.1021/cm8004634, Google ScholarCrossref, ISI
  6. 6. V. Dorcet and G. Trolliard, Chem. Mater. 20, 5074 (2008). https://doi.org/10.1021/cm800464d, Google ScholarCrossref
  7. 7. M. Davies, E. Aksel, and J. L. Jones, “Enhanced high-temperature piezoelectric coefficients and thermal stability of Fe- and Mn-substituted Na0.5Bi0.5TiO3 ceramics,” J. Am. Ceram. Soc. (in press). https://doi.org/10.1111/j.1551–2916.2011.04441.x, Google Scholar
  8. 8. J. Wang, B. Toby, P. L. Lee, L. Ribaud, S. M. Antao, C. Kurtz, M. Ramanathan, R. B. von Dreele, and M. A. Beno, Rev. Sci. Instrum. 79, 085105 (2008). https://doi.org/10.1063/1.2969260, Google ScholarScitation, ISI
  9. 9. P. L. Lee, D. Shu, M. Ramanathan, C. Preissner, J. Wang, M. A. Beno, R. B. Von Dreele, L. Ribaud, C. Kurtz, S. M. Antao, X. Jiao, and B. H. Toby, J. Synchrotron Radiat. 15, 427 (2008). https://doi.org/10.1107/S0909049508018438, Google ScholarCrossref
  10. 10. A. C. Larson and R. B. Von Dreele, Los Alamos National Laboratory Report No. LAUR 86-748, 2004 (unpublished). Google Scholar
  11. 11. See supplementary material at http://dx.doi.org/10.1063/1.3573826 for all refinement outputs and quality of fit indicators in Tables S.I-S.III. Google Scholar
  12. 12. Y. S. Sung, J. M. Kim, J. H. Cho, T. K. Song, M. H. Kim, and T. G. Park, Appl. Phys. Lett. 98, 012902 (2011). https://doi.org/10.1063/1.3525370, Google ScholarScitation, ISI
  13. 13. I. Barin, Thermochemical Data of Pure Substances, 3rd ed. (Wiley, Weinheim, Germany, 2008), Chap. 12. Google Scholar
  14. 14. D. Pandey, A. K. Singh, and S. Baik, Acta Crystallogr., Sect. A: Found. Crystallogr. 64, 192 (2008). https://doi.org/10.1107/S0108767307055511, Google ScholarCrossref
  15. 15. H. T. Stokes, E. H. Kisi, D. M. Hatch, and C. J. Howard, Acta Crystallogr., Sect. B: Struct. Sci. 58, 934 (2002). https://doi.org/10.1107/S0108768102015756, Google ScholarCrossref
  16. 16. A. M. Glazer, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 28, 3384 (1972). https://doi.org/10.1107/S0567740872007976, Google ScholarCrossref
  17. 17. H. Yokota, N. Zhang, A. E. Taylor, P. A. Thomas, and A. M. Glazer, Phys. Rev. B 80, 104109 (2009). https://doi.org/10.1103/PhysRevB.80.104109, Google ScholarCrossref
  18. 18. R. Ranjan A. K. Singh, Ragini, and D. Pandey, Phys. Rev. B 71, 092101 (2005). https://doi.org/10.1103/PhysRevB.71.092101, Google ScholarCrossref
  19. 19. B. Noheda, D. E. Cox, G. Shirane, R. Guo, B. Jones, and L. E. Cross, Phys. Rev. B 63, 014103 (2000). https://doi.org/10.1103/PhysRevB.63.014103, Google ScholarCrossref, ISI
  20. 20. J. M. Kiat, Y. Uesu, B. Dkhil, M. Matsuda, C. Malibert, and G. Calvarin, Phys. Rev. B 65, 064106 (2002). https://doi.org/10.1103/PhysRevB.65.064106, Google ScholarCrossref, ISI
  21. 21. G. A. Smolenskii, V. A. Isupov, A. I. Agranovskaya, and N. N. Krainik, Sov. Phys. Solid State 2, 2651 (1961). Google Scholar
  22. 22. D. Damjanovic, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 1574 (2009). https://doi.org/10.1109/TUFFC.2009.1222, Google ScholarCrossref, ISI
  23. 23. T. Takenaka, K. Maruyama, and K. Sakata, Jpn. J. Appl. Phys., Part 1 30, 2236 (1991). https://doi.org/10.1143/JJAP.30.2236, Google ScholarCrossref, ISI
  24. 24. W. Jo, J. E. Daniels, J. L. Jones, X. Tan, P. A. Thomas, D. Damjanovic, and J. Roedel, J. Appl. Phys. 109, 014110 (2011). https://doi.org/10.1063/1.3530737, Google ScholarScitation, ISI
  1. © 2011 American Institute of Physics.