No Access Submitted: 30 October 2010 Accepted: 31 January 2011 Published Online: 03 March 2011
J. Chem. Phys. 134, 094309 (2011); https://doi.org/10.1063/1.3556818
more...View Affiliations
View Contributors
  • Yuan Feng
  • Hong-Guang Xu
  • Weijun Zheng
  • Hongmin Zhao
  • Anil K. Kandalam
  • Puru Jena
The electronic structures of CuBO2, Cu(BO2)2, Cu2(BO2), and Cu2(BO2)2 clusters were investigated using photoelectron spectroscopy. The measured vertical and adiabatic detachment energies of these clusters revealed unusual properties of Cu(BO2)2 cluster. With an electron affinity of 5.07 eV which is larger than that of its BO2 superhalogen (4.46 eV) building-block, Cu(BO2)2 can be classified as a hyperhalogen. Density functional theory based calculations were carried out to identify the ground state geometries and study the electronic structures of these clusters. Cu(BO2) and Cu(BO2)2 clusters were found to form chainlike structures in both neutral and anionic forms. Cu2(BO2) and Cu2(BO2)2 clusters, on the other hand, preferred a chainlike structure in the anionic form but a closed ringlike structure in the neutral form. Equally important, substantial differences between adiabatic detachment energies and electron affinities were found, demonstrating that correct interpretation of the experimental photoelectron spectroscopy data requires theoretical support not only in determining the ground state geometry of neutral and anionic clusters, but also in identifying their low lying isomers.
W.J.Z. acknowledges the Institute of Chemistry, Chinese Academy of Sciences for start-up funds. A.K.K. acknowledges the faculty start-up funds made available through the Louisiana Board of Regents-Research Commercialization/Educational Enhancement Program (RC/EEP). P.J. acknowledges partial support of the Defense Threat Reduction Agency and the (U.S.) Department of Energy (DOE).
  1. 1. H. Hotop and W. C. Lineberger, J. Phys. Chem. Ref. Data 14, 731 (1985). https://doi.org/10.1063/1.555735 , Google ScholarScitation, ISI
  2. 2. U. Berzinsh, M. Gustafsson, D. Hanstorp, A. Klinkmuller, U. Ljungblad, and A. M. Martenssonpendrill, Phys. Rev. A 51, 231 (1995). https://doi.org/10.1103/PhysRevA.51.231 , Google ScholarCrossref, ISI
  3. 3. N. Bartlett and D. H. Lohman, Proc. Chem. Soc. 115 (1962); https://doi.org/10.1039/PS9620000097 , Google ScholarCrossref
    N. Bartlett, Proc. Chem. Soc. 218 (1962). https://doi.org/10.1039/PS9620000197 , , Google ScholarCrossref
  4. 4. G. L. Gutsev and A. I. Boldyrev, Chem. Phys. 56, 277 (1981). https://doi.org/10.1016/0301-0104(81)80150-4 , Google ScholarCrossref
  5. 5. G. L. Gutsev and A. I. Boldyrev, Chem. Phys. Lett. 108, 250 (1984). https://doi.org/10.1016/0009-2614(84)87059-1 , Google ScholarCrossref
  6. 6. G. L. Gutsev and A. I. Boldyrev, J. Phys. Chem. 94, 2256 (1990). https://doi.org/10.1021/j100369a012 , Google ScholarCrossref
  7. 7. A. I. Boldyrev and J. Simons, J. Chem. Phys. 97, 2826 (1991). https://doi.org/10.1063/1.463025 , Google ScholarScitation
  8. 8. A. I. Boldyrev and W. von Niessen, Chem. Phys. 155, 71 (1991). https://doi.org/10.1016/0301-0104(91)87007-I , Google ScholarCrossref
  9. 9. A. I. Boldyrev and J. Simons, J. Chem. Phys. 99, 4628 (1993). https://doi.org/10.1063/1.466061 , Google ScholarScitation
  10. 10. G. L. Gutsev, P. Jena, and R. J. Bartlett, Chem. Phys. Lett. 292, 289 (1998). https://doi.org/10.1016/S0009-2614(98)00716-7 , Google ScholarCrossref
  11. 11. X.-B. Wang, C.-F. Ding, L.-S. Wang, A. I. Boldyrev, and J. Simons, J. Chem. Phys. 110, 4763 (1999). https://doi.org/10.1063/1.478386 , Google ScholarScitation, ISI
  12. 12. G. L. Gutsev, B. K. Rao, P. Jena, X. B. Wang, and L.-S. Wang, Chem. Phys. Lett. 312, 598 (1999). https://doi.org/10.1016/S0009-2614(99)00976-8 , Google ScholarCrossref
  13. 13. G. L. Gutsev, P. Jena, H.-J. Zhai, and L.-S. Wang, J. Chem. Phys. 115, 7935 (2001). https://doi.org/10.1063/1.1405438 , Google ScholarScitation, ISI
  14. 14. X. Yang, X.-B. Wang, L.-S. Wang, S. Niu, and T. Ichiye, J. Chem. Phys. 119, 8311 (2003). https://doi.org/10.1063/1.1610431 , Google ScholarScitation
  15. 15. M. Sobczyk, A. Sawicka, and P. Skurski, Eur. J. Inorg. Chem. 20, 3790 (2003). https://doi.org/10.1002/ejic.200300180 , Google ScholarCrossref
  16. 16. A. N. Alexandrova, A. I. Boldyrev, Y.-J. Fu, X. Yang, X.-B. Wang, and L.-S. Wang, J. Chem. Phys. 121, 5709 (2004). https://doi.org/10.1063/1.1783276 , Google ScholarScitation, ISI
  17. 17. B. M. Elliot, E. Koyle, A. I. Boldyrev, X.-B. Wang, and L.-S. Wang, J. Phys. Chem. A 109, 11560 (2005). https://doi.org/10.1021/jp054036v , Google ScholarCrossref
  18. 18. I. Anusiewicz and P. Skurski, Chem. Phys. Lett. 440, 41 (2007). https://doi.org/10.1016/j.cplett.2007.04.016 , Google ScholarCrossref
  19. 19. J. Yang, X.-B. Wang, X.-P. Xing, and L.-S. Wang, J. Chem. Phys. 128, 201102 (2008). https://doi.org/10.1063/1.2938390 , Google ScholarScitation, ISI
  20. 20. I. Anusiewicz, Aust. J. Chem. 61, 712 (2008). https://doi.org/10.1071/CH08212 , Google ScholarCrossref
  21. 21. P. Koirala, M. Willis, B. Kiran, A. K. Kandalam, and P. Jena, J. Phys. Chem. C 114, 16018 (2010). https://doi.org/10.1021/jp101807s , Google ScholarCrossref
  22. 22. H.-J. Zhai, L.-M. Wang, S.-D. Li, and L.-S. Wang, J. Phys. Chem. A 111, 1030 (2007). https://doi.org/10.1021/jp0666939 , Google ScholarCrossref
  23. 23. M. Götz, M. Willis, A. K. Kandalam, G. F. Ganteför, and P. Jena, ChemPhysChem 11, 853 (2010). https://doi.org/10.1002/cphc.200901027 , Google ScholarCrossref
  24. 24. Y. Feng, H.-G. Xu, Z.-G. Zhang, Z. Gao, and W. J. Zheng, J. Chem. Phys. 132, 074308 (2010). https://doi.org/10.1063/1.3299290 , Google ScholarScitation
  25. 25. M. Willis, M. Götz, A. K. Kandalam, G. F. Ganteför, and P. Jena, Angew. Chem., Int. Ed. 49, 8966 (2010). https://doi.org/10.1002/anie.201002212 , Google ScholarCrossref
  26. 26. H.-G. Xu, Z.-G. Zhang, Y. Feng, J.-Y. Yuan, Y.-C. Zhao, and W.-J. Zheng, Chem. Phys. Lett. 487, 204 (2010). https://doi.org/10.1016/j.cplett.2010.01.050 , Google ScholarCrossref, ISI
  27. 27. M. J. Frish, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 03, Revision D.02. Gaussian, Inc., Wallingford, CT, 2004. Google Scholar
  28. 28. A. D. Becke, J. Chem. Phys. 98, 5648 (1993). https://doi.org/10.1063/1.464913 , Google ScholarScitation, ISI
  29. 29. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988). https://doi.org/10.1103/PhysRevB.37.785 , Google ScholarCrossref, ISI
  30. 30. X.-B. Wang, L.-S. Wang, R. Brown, P. Schwerdtfeger, D. Schroeder, and H. Schwarz, J. Chem. Phys. 114, 7388 (2001). https://doi.org/10.1063/1.1362289 , Google ScholarScitation, ISI
  1. © 2011 American Institute of Physics.