No Access Submitted: 13 April 2010 Accepted: 10 November 2010 Published Online: 14 January 2011
Journal of Applied Physics 109, 013717 (2011); https://doi.org/10.1063/1.3525582
more...View Affiliations
View Contributors
  • Magdalena Lidia Ciurea
  • Sorina Lazanu
  • Ionel Stavarache
  • Ana-Maria Lepadatu
  • Vladimir Iancu
  • Mihai Razvan Mitroi
  • Raoul Rashid Nigmatullin
  • Cristina Mihaela Baleanu
The trap parameters of defects in Si/CaF2 multilayered structures were determined from the analysis of optical charging spectroscopy measurements. Two kinds of maxima were observed. Some of them were rather broad, corresponding to “normal” traps, while the others, very sharp, were attributed to stress-induced traps. A procedure of optimal linear smoothing the noisy experimental data has been developed and applied. This procedure is based on finding the minimal value of the relative error with respect to the value of the smoothing window. In order to obtain a better accuracy for the description of the trapping-detrapping process, a Gaussian temperature dependence of the capture cross-sections characterizing the stress-induced traps was introduced. Both the normal and the stress-induced traps have been characterized, including some previously considered as only noise features.
The Romanian contribution to this work was supported by the Romanian National Authority for Scientific Research through the CNCSIS–UEFISCDI, under Contract No. PCCE-ID-76 and the Core Program Contract No. PN09-45. The Russian contribution was supported by the Russian Ministry of Higher Education from the grant Russian Scientific Potential of Higher Schools under Grant No. RSP-14.
  1. 1. H. Ö. Ólafsson, Detection and removal of traps at the SiO2/SiC interface, Ph.D. thesis, Chalmers University of Technology, Göteborg, 2004. Google Scholar
  2. 2. T. E. Rudenko, I. N. Osiyuk, I. P. Tyagulski, H. Ö. Ólafsson, and E. Ö. Sveinbjörnsson, Solid-State Electron. 49, 545 (2005). https://doi.org/10.1016/j.sse.2004.12.006, Google ScholarCrossref, ISI
  3. 3. K. M. Wong and W. K. Chim, Appl. Phys. Lett. 88, 083510 (2006). https://doi.org/10.1063/1.2177352, Google ScholarScitation, ISI
  4. 4. A. Khan and A. Freundlich, Appl. Phys. Lett. 88, 103504 (2006). https://doi.org/10.1063/1.2183821, Google ScholarScitation, ISI
  5. 5. J. W. Kim, G. H. Song, and J. W. Lee, Appl. Phys. Lett. 88, 182103 (2006). https://doi.org/10.1063/1.2200392, Google ScholarScitation, ISI
  6. 6. I. J. Chen, T. T. Chen, Y. F. Chen, and T. Y. Lin, Appl. Phys. Lett. 89, 142113 (2006). https://doi.org/10.1063/1.2360221, Google ScholarScitation
  7. 7. J. -S. Lee, J. H. Cho, C. Y. Lee, I. P. Kim, J. J. Park, Y. -M. Kim, H. J. Shin, J. G. Lee, and F. Carusso, Nat. Nanotechnol. 2, 790 (2007). https://doi.org/10.1038/nnano.2007.380, Google ScholarCrossref, ISI
  8. 8. K. P. McKenna and A. L. Shluger, Nature Mater. 7, 859 (2007). https://doi.org/10.1038/nmat2289, Google ScholarCrossref
  9. 9. Y. J. Seo, K. C. Kim, T. G. Kim, Y. M. Sung, H. Y. Cho, M. S. Joo, and S. H. Pyi, Appl. Phys. Lett. 92, 132104 (2008). https://doi.org/10.1063/1.2830000, Google ScholarScitation
  10. 10. Y. J. Seo, K. C. Kim, H. D. Kim, M. S. Joo, H. M. An, and T. G. Kim, Appl. Phys. Lett. 93, 063508 (2008). https://doi.org/10.1063/1.2970990, Google ScholarScitation
  11. 11. S. Prezioso, A. Anopchenko, Z. Gaburro, L. Pavesi, G. Pucker, L. Vanzetti, and P. Bellutti, J. Appl. Phys. 104, 063103 (2008). https://doi.org/10.1063/1.2977749, Google ScholarScitation
  12. 12. D. U. Lee, T. H. Lee, E. K. Kim, J. -W. Shin, and W. -J. Cho, Appl. Phys. Lett. 95, 063501 (2009). https://doi.org/10.1063/1.3205112, Google ScholarScitation
  13. 13. R. Beyer and J. von Borany, J. Appl. Phys. 105, 064513 (2009). https://doi.org/10.1063/1.3087131, Google ScholarScitation
  14. 14. S. Kuge and H. Yoshida, J. Appl. Phys. 105, 093708 (2009). https://doi.org/10.1063/1.3122597, Google ScholarScitation
  15. 15. D. M. Fleetwood, S. T. Pantelides, and R. D. Schrimpf, in Defects in Microelectronic Materials and Devices, edited by D. M. Fleetwood, S. T. Pantelides, and R. D. Schrimpf (CRC, Boca Raton, 2009), pp. 215–258. Google Scholar
  16. 16. D. A. Faux, J. R. Downes, and E. P. O'Reilly, J. Appl. Phys. 82, 3754 (1997). https://doi.org/10.1063/1.365738, Google ScholarScitation
  17. 17. Z. Pei, J. -W. Shi, Y. -M. Hsu, F. Yuan, C. S. Liang, S. C. Lu, W. Y. Hsieh, M. -J. Tsai, and C. W. Liu, IEEE Electron Device Lett. 25, 286 (2004). https://doi.org/10.1109/LED.2004.826975, Google ScholarCrossref
  18. 18. A. Benfdila, Proceedings of the 1st International Workshop on Semiconductor and Nanocrystals, SEMINANO 2005, Budapest, 10–12 September 2005, edited by B. Pödör, Zs. Horvath, and P. Basa, MTA MFA (Research Institute for Technical Physics and Materials Science of the Hungarian Academy of Sciences), Budapest, Vol. 1, pp. 123–126. Google Scholar
  19. 19. J. F. Chen, C. H. Chiang, P. C. Hsieh, and J. S. Wang, J. Appl. Phys. 101, 033702 (2007). https://doi.org/10.1063/1.2433771, Google ScholarScitation
  20. 20. S. Dhamodaran, A. P. Pathak, A. Turos, R. Kesavamoorthy, and B. Sundaravel, Nucl. Instrum. Methods Phys. Res. B 266, 1908 (2008). https://doi.org/10.1016/j.nimb.2007.12.087, Google ScholarCrossref
  21. 21. E. Lusky, Y. Shacham-Diamand, A. Shappir, I. Bloom, and B. Eitan, Appl. Phys. Lett. 85, 669 (2004). https://doi.org/10.1063/1.1774272, Google ScholarScitation
  22. 22. G. Bersuker, C. S. Park, J. Barnett, P. S. Lysaght, P. D. Kirsch, C. D. Young, R. Choi, B. H. Lee, B. Foran, K. van Benthem, S. J. Pennycook, P. M. Lenahan, and J. T. Ryan, J. Appl. Phys. 100, 094108 (2006). https://doi.org/10.1063/1.2362905, Google ScholarScitation, ISI
  23. 23. G. Bersuker, A. Korkin, Y. Jeon, and H. R. Huff, Appl. Phys. Lett. 80, 832 (2002). https://doi.org/10.1063/1.1445812, Google ScholarScitation
  24. 24. A. Neugroschel, L. Wang, and G. Bersuker, J. Appl. Phys. 96, 388 (2004). https://doi.org/10.1063/1.1781766, Google ScholarScitation
  25. 25. J. P. Campbell, P. M. Lenahan, A. T. Krishnan, and S. Krishnan, Appl. Phys. Lett. 87, 204106 (2005). https://doi.org/10.1063/1.2131197, Google ScholarScitation
  26. 26. E. Płaczek-Popko, J. Trzmieł, E. Ziełony, S. Grzanka, R. Czernecki, and T. Suski, Physica B 404, 4889 (2009). https://doi.org/10.1016/j.physb.2009.08.237, Google ScholarCrossref
  27. 27. M. Gassoumi, J. M. Bluet, F. Chekir, I. Dermoul, H. Maaref, G. Guillot, A. Minko, V. Hoel, and C. Gaquière, Mater. Sci. Eng., C 26, 383 (2006). https://doi.org/10.1016/j.msec.2005.10.033, Google ScholarCrossref
  28. 28. A. Mandelis and J. Xia, J. Appl. Phys. 103, 043704 (2008). https://doi.org/10.1063/1.2842401, Google ScholarScitation, ISI
  29. 29. D. Cavalcoli, A. Cavallini, M. Rossi, and S. Pizzini, Semiconductors 41, 421 (2007). https://doi.org/10.1134/S1063782607040112, Google ScholarCrossref
  30. 30. O. V. Brodovoy, V. A. Skryshevsky, and V. A. Brodovoy, Solid-State Electron. 46, 83 (2002). https://doi.org/10.1016/S0038-1101(01)00260-X, Google ScholarCrossref
  31. 31. V. Iancu, M. L. Ciurea, and M. Draghici, J. Appl. Phys. 94, 216 (2003). https://doi.org/10.1063/1.1576301, Google ScholarScitation
  32. 32. M. L. Ciurea, V. Iancu, and M. R. Mitroi, Solid-State Electron. 51, 1328 (2007). https://doi.org/10.1016/j.sse.2007.07.002, Google ScholarCrossref
  33. 33. V. J. Barclay and R. F. Bonner, Anal. Chem. 69, 78 (1997). https://doi.org/10.1021/ac960638m, Google ScholarCrossref
  34. 34. M. Jakubowska, E. Hull, R. Piech, and W. W. Kubiak, Chem. Anal. 53, 215 (2008). Google Scholar
  35. 35. C. E. Heil and D. F. Walnut, SIAM Rev. 31, 628 (1989). https://doi.org/10.1137/1031129, Google ScholarCrossref
  36. 36. Z. -Y. Cai and M. -Z. Li, Measurement 33, 47 (2002). https://doi.org/10.1016/S0263-2241(02)00021-0, Google ScholarCrossref
  37. 37. M. Laddomada, Signal Proc. IET 4, 158 (2010). https://doi.org/10.1049/iet-spr.2009.0008, Google ScholarCrossref
  38. 38. K. -J. He and Z. -M. Chen, J. Comput. Appl. 27, 1479 (2007). Google Scholar
  39. 39. C. H. Chou, Physica B 253, 320 (1998). https://doi.org/10.1016/S0921-4526(98)00159-8, Google ScholarCrossref
  40. 40. R. Ruotolo and D. M. Storer, J. Sound Vib. 239, 41 (2001). https://doi.org/10.1006/jsvi.2000.3155, Google ScholarCrossref
  41. 41. J. Zhang, H. F. Chen, F. Fang, and W. Liao, IEEE Trans. Biomed. Eng. 57, 343 (2010). https://doi.org/10.1109/TBME.2009.2031098, Google ScholarCrossref
  42. 42. J. Wang, L. S. Zhou, and L. Y. Zhang, China Mech. Eng. 17, 1744 (2006). Google Scholar
  43. 43. V. Ioannou-Sougleridis, V. Tsakiri, A. G. Nassiopoulou, F. Bassani, S. Menard, and F. A. d’Avitaya, Mater. Sci. Eng., B 69–70, 309 (2000). https://doi.org/10.1016/S0921-5107(99)00293-7, Google ScholarCrossref
  44. 44. V. Ioannou-Sougleridis, A. G. Nassiopoulou, M. L. Ciurea, F. Bassani, and F. A. d’Avitaya, Mater. Sci. Eng., C 15, 45 (2001). https://doi.org/10.1016/S0928-4931(01)00215-6, Google ScholarCrossref
  45. 45. D. Kovalev, G. Polisski, M. Ben-Chorin, J. Diener, and F. Koch, J. Appl. Phys. 80, 5978 (1996). https://doi.org/10.1063/1.363595, Google ScholarScitation
  46. 46. S. M. Pershin, A. F. Bunkin, V. A. Lukyanchenko, and R. R. Nigmatullin, Laser Phys. Lett. 4, 809 (2007). https://doi.org/10.1002/lapl.200710067, Google ScholarCrossref
  47. 47. R. R. Nigmatullin, Phys. Wave Phenom. 16, 119 (2008). https://doi.org/10.3103/S1541308X08020064, Google ScholarCrossref
  48. 48. R. R. Nigmatullin, D. Baleanu, E. Dinç, and A. O. Solak, Physica E (Amsterdam) 41, 609 (2009). https://doi.org/10.1016/j.physe.2008.10.015, Google ScholarCrossref
  49. 49. P. Muller, Phys. Status Solidi A 23, 165 (1974). https://doi.org/10.1002/pssa.2210230118, Google ScholarCrossref
  50. 50. P. Muller, Phys. Status Solidi A 28, 521 (1975). https://doi.org/10.1002/pssa.2210280217, Google ScholarCrossref
  1. © 2011 American Institute of Physics.