Published Online: 14 December 2010
Accepted: September 2010
Journal of Mathematical Physics 51, 122103 (2010); https://doi.org/10.1063/1.3503472
more...View Affiliations
Given an arbitrary Lagrangian function on Rd and a choice of classical path, one can try to define Feynman's path integral supported near the classical path as a formal power series parameterized by “Feynman diagrams,” although these diagrams may diverge. We compute this expansion and show that it is (formally, if there are ultraviolet divergences) invariant under volume-preserving changes of coordinates. We prove that if the ultraviolet divergences cancel at each order, then our formal path integral satisfies a “Fubini theorem” expressing the standard composition law for the time evolution operator in quantum mechanics. Moreover, we show that when the Lagrangian is inhomogeneous quadratic in velocity such that its homogeneous-quadratic part is given by a matrix with constant determinant, then the divergences cancel at each order. Thus, by “cutting and pasting” and choosing volume-compatible local coordinates, our construction defines a Feynman-diagrammatic “formal path integral” for the nonrelativistic quantum mechanics of a charged particle moving in a Riemannian manifold with an external electromagnetic field.
  1. 1. DeWitt-Morette, C., Ann. Phys. 97, 367 (1976). Google ScholarCrossref
  2. 2. Duru, I. H. and Kleinert, H., Fortschr. Phys. 30, 401 (1982). https://doi.org/10.1002/prop.19820300802 , Google ScholarCrossref
  3. 3. Dyson, F. J., Phys. Rev. 75, 486 (1948). https://doi.org/10.1103/PhysRev.75.486 , Google ScholarCrossref
  4. 4. Dyson, F. J., Phys. Rev. 75, 1736 (1949). https://doi.org/10.1103/PhysRev.75.1736 , Google ScholarCrossref
  5. 5. Elizalde, E., Odintsov, S. D., Romeo, A., Bytsenko, A. A., and Zerbini, S., Zeta Regularization Techniques with Applications (World Scientific, River Edge, NJ, 1994). Google ScholarCrossref
  6. 6. Evans, L. C. and Zworski, M., Lectures on semiclassical analysis, 2007. http://math.berkeley.edu/∼zworski/semiclassical.pdf. Google Scholar
  7. 7. Feynman, R. P., Rev. Mod. Phys. 20, 367 (1948). https://doi.org/10.1103/RevModPhys.20.367 , Google ScholarCrossref
  8. 8. Feynman, R. P., Phys. Rev. 76, 769 (1949). https://doi.org/10.1103/PhysRev.76.769 , Google ScholarCrossref
  9. 9. Feynman, R. P., Brown, L. M., and Dirac, P. A. M., Feynman's Thesis: A New Approach to Quantum Theory (World Scientific, Hackensack, NJ, 2005). Google Scholar
  10. 10. Feynman, R. P. and Hibbs, A. R., Quantum Mechanics and Path Integrals, International Series in Pure and Applied Physics (McGraw-Hill, New York, 1965) Google Scholar
  11. 11. Hardy, M., Electron. J. Com. 13, Research Paper 1, pp. 13 (electronic), 2006. Google Scholar
    http://www.combinatorics.org/Volume_13/Abstracts/v13i1r1.html. Google Scholar
  12. 12. Helfer, A. D., Pac. J. Math. 164, 321 (1994). Google ScholarCrossref
  13. 13. Hori, K., Katz, S., Klemm, A., Pandharipande, R., Thomas, R., Vafa, C., Vakil, R., and Zaslow, E., Mirror Symmetry, Vol. 1 of Clay mathematics monographs (Amer. Math. Soc., Providence, RI, 2003). Google Scholar
  14. 14. Johnson-Freyd, T., “On the coordinate (in)dependence of the formal path integral.” March 2010. arXiv:1003.5730 [math-ph]. Google Scholar
  15. 15. T. Johnson-Freyd, “Feynman-diagrammatic description of the asymptotics of the time evolution operator in quantum mechanics,” Lett. Math. Phys. 94, 123 (2010). https://doi.org/10.1007/s11005-010-0424-2 , Google ScholarCrossref
    arXiv:1003.1156 , , Google Scholar
  16. 16. Johnson-Freyd, T. and Schommer-Pries, C. Critical points on a fiber bundle. October 2009. Online forum discussion at http://mathoverflow.net/questions/134/. Google Scholar
  17. 17. Kaiser, D., Drawing Theories Apart: the Dispersion of Feynman Diagrams in Postwar Physics (University of Chicago, Chicago, 2005). Google ScholarCrossref
  18. 18. Kleinert, H. and Chervyakov, A., Phys. Lett. B 464, 257 (1999). https://doi.org/10.1016/S0370-2693(99)00943-0 , Google ScholarCrossref
  19. 19. Kleinert, H. and Chervyakov, A., Phys. Lett. A 273, 1 (2000). https://doi.org/10.1016/S0375-9601(00)00475-8 , Google ScholarCrossref
  20. 20. Kleinert, H. and Chervyakov, A., Phys. Lett. B 477, 373 (2000). https://doi.org/10.1016/S0370-2693(00)00199-4 , Google ScholarCrossref
  21. 21. Kleinert, H. and Chervyakov, A., Eur. Phys. J. C 19, 743 (2001). https://doi.org/10.1007/s100520100600 , Google ScholarCrossref
  22. 22. Kleinert, H. and Chervyakov, A., Int. J. Mod. Phys. A 17, 2019 (2002). https://doi.org/10.1142/S0217751X02006146 , Google ScholarCrossref
  23. 23. Kleinert, H. and Chervyakov, A., Phys. Lett. A 308, 85 (2003). https://doi.org/10.1016/S0375-9601(02)01801-7 , Google ScholarCrossref
  24. 24. Manuel, C. and Tarrach, R., Phys. Lett. B 328, 113 (1994). https://doi.org/10.1016/0370-2693(94)90437-5 , Google ScholarCrossref
  25. 25. Milnor, J., Morse Theory. Based on lecture notes by M. Spivak and R. Wells. Annals of Mathematics Studies, No. 51 (Princeton University, Princeton, NJ, 1963). Google ScholarCrossref
  26. 26. Moser, J., Trans. Amer. Math. Soc. 120, 286 (1965). Google ScholarCrossref
  27. 27. Penrose, R., “Applications of negative dimensional tensors.” in Combinatorial Mathematics and Its Applications, edited by D. J. A. Welsh (Mathematical Institute, Oxford, Academic, London, 1971), pp 221–244. Google Scholar
  28. 28. Polyak, M., “Feynman diagrams for pedestrians and mathematicians,” in Graphs and Patterns in Mathematics and Theoretical Physics, edited by M. Lyubich and L. A. Takhtajan, Vol. 73 of Proc. Sympos. Pure Math. (Amer. Math. Soc., Providence, RI, 2005), pp 15–42, Google ScholarCrossref
  29. 29. Reshetikhin, N., Lectures on quantization of gauge systems. August 2010. arXiv:1008.1411 [math-ph]. Google Scholar
  30. 30. Takhtajan, L. A., Quantum Mechanics for Mathematicians (Amer. Math. Soc., Providence, RI, 2008). Google ScholarCrossref
  31. © 2010 American Institute of Physics.