ABSTRACT
A high resolution synchrotron radiation core level photoemission study of the native oxides on was carried out in order to determine the various oxidation states present on the surface. The thermal stability of the oxidation states was also investigated by annealing the samples in vacuum at temperatures ranging from 150 to . As well as the widely reported oxidation states, various arsenic, gallium, and indium oxides, along with mixed phase gallium arsenic and indium gallium oxides are identified. Elemental binary oxides have been identified as residing at the oxide substrate interface and could play an important role in understanding the growth of metal oxide dielectric layers on the InGaAs surface, due to their apparent chemical stability.
ACKNOWLEDGMENTS
The authors wish to acknowledge financial support for this work from the Science Foundation Ireland Strategic Research Cluster FORME (Grant No. 07/SRC/1127) and Barry Brennan acknowledges studentship funding from IRCSET. Access to the ASTRID synchrotron was funded under the EU Integrated Infrastructures Initiative Contract No. 226716.
- 1. T. Ulm, A. Klehr, G. Erbert, F. Harth, and J. A. L’huillier, Appl. Phys. B: Lasers Opt. 99, 409 (2010). https://doi.org/10.1007/s00340-010-3963-4, Google ScholarCrossref
- 2. Z. L. Yuan, A. W. Sharpe, J. F. Dynes, A. R. Dixon, and A. J. Shields, Appl. Phys. Lett. 96, 071101 (2010). https://doi.org/10.1063/1.3309698, Google ScholarScitation, ISI
- 3. N. Waldron, K. Dae-Hyun, and J. A. del Alamo, IEEE Trans. Electron Devices 57, 297 (2010). https://doi.org/10.1109/TED.2009.2035031, Google ScholarCrossref
- 4. International Technology Roadmap for Semiconductors, available online at http://public.itrs.net, Google Scholar
- 5. E. O’Connor, R. D. Long, K. Cherkaoui, K. K. Thomas, F. Chalvet, I. M. Povey, M. E. Pemble, P. K. Hurley, B. Brennan, G. Hughes, and S. B. Newcomb, Appl. Phys. Lett. 92, 022902 (2008). https://doi.org/10.1063/1.2829586, Google ScholarScitation
- 6. B. Brennan, S. McDonnell, and G. Hughes, Thin Solid Films 518, 1980 (2010). https://doi.org/10.1016/j.tsf.2009.07.146, Google ScholarCrossref
- 7. D. Sheela and N. Dasgupta, Semicond. Sci. Technol. 23, 035018 (2008). https://doi.org/10.1088/0268-1242/23/3/035018, Google ScholarCrossref
- 8. S. Arabasz, E. Bergignat, G. Hollinger, and J. Szuber, Vacuum 80, 888 (2006). https://doi.org/10.1016/j.vacuum.2005.11.067, Google ScholarCrossref, ISI
- 9. H. Sugahara, M. Oshima, H. Oigawa, Y. Shigekawa, and Y. Nannichi, J. Appl. Phys. 69, 4349 (1991). https://doi.org/10.1063/1.348380, Google ScholarScitation
- 10. M. G. Kang, S. H. Sa, H. H. Park, K. S. Suh, and J. L. Lee, Mater. Sci. Eng., B 46, 65 (1997). https://doi.org/10.1016/S0921-5107(96)01933-2, Google ScholarCrossref
- 11. M. G. Kang, H. H. Park, K. S. Suh, and J. L. Lee, Thin Solid Films 290–291, 328 (1996). https://doi.org/10.1016/S0040-6090(96)08970-5, Google ScholarCrossref
- 12. P. T. Chen, Y. Sun, E. Kim, P. C. McIntyre, W. Tsai, M. Garner, P. Pianetta, Y. Nishi, and C. O. Chui, J. Appl. Phys. 103, 034106 (2008). https://doi.org/10.1063/1.2838471, Google ScholarScitation, ISI
- 13. D. Shahrjerdi, D. I. Garcia-Gutierrez, T. Akyol, S. R. Bank, E. Tutuc, J. C. Lee, and S. K. Banerjee, Appl. Phys. Lett. 91, 193503 (2007). https://doi.org/10.1063/1.2806190, Google ScholarScitation
- 14. L. Geelhaar, R. A. Bartynski, F. Ren, M. Schnoes, and D. N. Buckley, J. Appl. Phys. 80, 3076 (1996). https://doi.org/10.1063/1.363130, Google ScholarScitation
- 15. B. Shin, D. Choi, J. S. Harris, and P. C. McIntyre, Appl. Phys. Lett. 93, 052911 (2008). https://doi.org/10.1063/1.2966357, Google ScholarScitation, ISI
- 16. M. Milojevic, C. L. Hinkle, F. S. Aguirre-Tostado, H. C. Kim, E. M. Vogel, J. Kim, and R. M. Wallace, Appl. Phys. Lett. 93, 252905 (2008). https://doi.org/10.1063/1.3054348, Google ScholarScitation, ISI
- 17. D. Paget, J. E. Bonnet, V. L. Berkovits, P. Chiaradia, and J. Avila, Phys. Rev. B 53, 4604 (1996). https://doi.org/10.1103/PhysRevB.53.4604, Google ScholarCrossref
- 18. P. Moriarty, B. Murphy, L. Roberts, A. A. Cafolla, L. Koenders, P. Bailey, and G. Hughes, Phys. Rev. B 50, 14237 (1994). https://doi.org/10.1103/PhysRevB.50.14237, Google ScholarCrossref, ISI
- 19. H. Morota and S. Adachi, J. Appl. Phys. 105, 043508 (2009). https://doi.org/10.1063/1.3078178, Google ScholarScitation, ISI
- 20. M. V. Lebedev, E. Mankel, T. Mayer, and W. Jaegermann, J. Phys. Chem. C 112, 18510 (2008). Google ScholarCrossref
- 21. F. J. Palomares, M. Alonso, I. Jimenez, J. Avila, J. L. Sacedon, and F. Soria, Surf. Sci. 482–485, 121 (2001). https://doi.org/10.1016/S0039-6028(00)01006-2, Google ScholarCrossref
- 22. M. Beerbom, T. Mayer, W. Jaegermann, D. R. Batchelor, and D. Schmeier, Anal. Bioanal. Chem. 374, 650 (2002). https://doi.org/10.1007/s00216-002-1404-x, Google ScholarCrossref
- 23. Z. Liu, Y. Sun, F. Machuca, P. Pianetta, and W. E. Spicer, J. Vac. Sci. Technol. A 21, 212 (2003). https://doi.org/10.1116/1.1532737, Google ScholarCrossref, ISI
- 24. M. V. Lebedev, D. Ensling, R. Hunger, T. Mayer, and W. Jaegermann, Appl. Surf. Sci. 229, 226 (2004). https://doi.org/10.1016/j.apsusc.2004.01.067, Google ScholarCrossref
- 25. M. Beerbom, Th. Mayer, and W. Jaegermann, J. Phys. Chem. B 104, 8503 (2000). https://doi.org/10.1021/jp0011342, Google ScholarCrossref
- 26. D. Ercolani, M. Lazzarino, G. Mori, B. Ressel, L. Sorba, A. Locatelli, S. Cherifi, A. Ballestrazzi, and S. Heun, Adv. Funct. Mater. 15, 587 (2005). https://doi.org/10.1002/adfm.200400033, Google ScholarCrossref
- 27. Y. Sun, P. Pianetta, P. -T. Chen, M. Kobayashi, Y. Nishi, N. Goel, M. Garner, and W. Tsai, Appl. Phys. Lett. 93, 194103 (2008). https://doi.org/10.1063/1.3025852, Google ScholarScitation, ISI
- 28. D. Y. Petrovykh, J. M. Sullivan, and L. J. Whitman, Surf. Interface Anal. 37, 989 (2005). https://doi.org/10.1002/sia.2095, Google ScholarCrossref
- 29. C. C. Surdu-Bob, S. O. Saied, and J. L. Sullivan, Appl. Surf. Sci. 183, 126 (2001). https://doi.org/10.1016/S0169-4332(01)00583-9, Google ScholarCrossref, ISI
- 30. T. Ishikawa and H. Ikoma, Jpn. J. Appl. Phys., Part 1 31, 3981 (1992). https://doi.org/10.1143/JJAP.31.3981, Google ScholarCrossref
- 31. J. Ivanco, T. Kubota, and H. Kobayashi, J. Appl. Phys. 97, 073712 (2005). https://doi.org/10.1063/1.1873037, Google ScholarScitation, ISI
- 32. G. Landgren, R. Ludeke, Y. Jugnet, J. F. Morar, and F. J. Himpsel, J. Vac. Sci. Technol. B 2, 351 (1984). https://doi.org/10.1116/1.582823, Google ScholarCrossref
- 33. G. Hollinger, R. Skheyta-Kabbani, and M. Gendry, Phys. Rev. B 49, 11159 (1994). https://doi.org/10.1103/PhysRevB.49.11159, Google ScholarCrossref, ISI
- 34. S. Arabasz, E. Bergignat, G. Hollinger, and J. Szuber, Appl. Surf. Sci. 252, 7659 (2006). https://doi.org/10.1016/j.apsusc.2006.03.061, Google ScholarCrossref
- 35. H. Chernoff and E. L. Lehmann, Ann. Math. Stat. 25, 579 (1954). https://doi.org/10.1214/aoms/1177728726, Google ScholarCrossref
- 36. M. P. Seah and M. T. Brown, J. Electron Spectrosc. Relat. Phenom. 95, 71 (1998). https://doi.org/10.1016/S0368-2048(98)00204-7, Google ScholarCrossref
- 37. J. M. Conny, C. J. Powell, and L. Currie, Surf. Interface Anal. 26, 939 (1998). https://doi.org/10.1002/(SICI)1096-9918(199811)26:12<939::AID-SIA441>3.0.CO;2-V, Google ScholarCrossref
- 38. C. L. Hinkle, M. Milojevic, B. Brennan, A. M. Sonnet, F. S. Aguirre-Tostado, G. Hughes, E. M. Vogel, and R. M. Wallace, Appl. Phys. Lett. 94, 162101 (2009). https://doi.org/10.1063/1.3120546, Google ScholarScitation, ISI
- 39. A. Herrera-Gómez, P. Pianetta, D. Marshall, E. Nelson, and W. E. Spicer, Phys. Rev. B 61, 12988 (2000) (AANALYZER is software for XPS peak deconvolution and available at http://qro.cinvestav.mx/~aanalyzer/). https://doi.org/10.1103/PhysRevB.61.12988, Google ScholarCrossref, ISI
- 40. M. Larive, G. Jezequel, J. P. Landesman, F. Solal, J. Nagle, B. Lepine, A. Taleb-Ibrahimi, G. Indlekofer, and X. Marcadet, Surf. Sci. 304, 298 (1994). https://doi.org/10.1016/0039-6028(94)91340-4, Google ScholarCrossref
- 41. J. Robertson, Appl. Phys. Lett. 94, 152104 (2009). https://doi.org/10.1063/1.3120554, Google ScholarScitation, ISI
- 42. B. Brennan, M. Milojevic, C. L. Hinkle, F. S. Aguirre-Tostado, G. Hughes, and R. M. Wallace (unpublished). Google Scholar
- 43. F. J. Himpsel, F. R. McFeely, A. Taleb-Ibrahimi, J. A. Yarmoff, and G. Hollinger, Phys. Rev. B 38, 6084 (1988). https://doi.org/10.1103/PhysRevB.38.6084, Google ScholarCrossref, ISI
- 44. G. Alvarez and H. J. Silverstone, Phys. Rev. A 40, 3690 (1989). https://doi.org/10.1103/PhysRevA.40.3690, Google ScholarCrossref
- 45. J. J. Yeh and I. Lindau, At. Data Nucl. Data Tables 32, 1 (1985). https://doi.org/10.1016/0092-640X(85)90016-6, Google ScholarCrossref, ISI
- 46. A. B. McLean, Surf. Sci. 220, L671 (1989). https://doi.org/10.1016/0039-6028(89)90456-1, Google ScholarCrossref
- 47. B. Brennan, Ph.D. thesis, Dublin City University, 2010. Google Scholar
- 48. V. Chab, L. Pekarek, I. Ulrych, J. Suchy, K. C. Prince, M. Peloi, M. Evans, C. Comicioli, M. Zacchigna, and C. Crotti, Surf. Sci. 377–379, 261 (1997). https://doi.org/10.1016/S0039-6028(96)01378-7, Google ScholarCrossref
- 49. T. Ishikawa and H. Ikoma, Jpn. J. Appl. Phys., Part 2 32, L607 (1993). https://doi.org/10.1143/JJAP.32.L607, Google ScholarCrossref
- 50. C. J. Powell, A. Jablonski, W. S. M. Werner, and W. Smekal, Appl. Surf. Sci. 239, 470 (2005). https://doi.org/10.1016/j.apsusc.2004.06.012, Google ScholarCrossref, ISI
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.