No Access Submitted: 27 May 2010 Accepted: 07 July 2010 Published Online: 13 September 2010
Journal of Applied Physics 108, 053516 (2010); https://doi.org/10.1063/1.3475499
more...View Affiliations
View Contributors
  • B. Brennan
  • G. Hughes
A high resolution synchrotron radiation core level photoemission study of the native oxides on In0.53Ga0.47As was carried out in order to determine the various oxidation states present on the surface. The thermal stability of the oxidation states was also investigated by annealing the samples in vacuum at temperatures ranging from 150 to 450°C. As well as the widely reported oxidation states, various arsenic, gallium, and indium oxides, along with mixed phase gallium arsenic and indium gallium oxides are identified. Elemental binary oxides have been identified as residing at the oxide substrate interface and could play an important role in understanding the growth of metal oxide dielectric layers on the InGaAs surface, due to their apparent chemical stability.
The authors wish to acknowledge financial support for this work from the Science Foundation Ireland Strategic Research Cluster FORME (Grant No. 07/SRC/1127) and Barry Brennan acknowledges studentship funding from IRCSET. Access to the ASTRID synchrotron was funded under the EU Integrated Infrastructures Initiative Contract No. 226716.
  1. 1. T. Ulm, A. Klehr, G. Erbert, F. Harth, and J. A. L’huillier, Appl. Phys. B: Lasers Opt. 99, 409 (2010). https://doi.org/10.1007/s00340-010-3963-4, Google ScholarCrossref
  2. 2. Z. L. Yuan, A. W. Sharpe, J. F. Dynes, A. R. Dixon, and A. J. Shields, Appl. Phys. Lett. 96, 071101 (2010). https://doi.org/10.1063/1.3309698, Google ScholarScitation, ISI
  3. 3. N. Waldron, K. Dae-Hyun, and J. A. del Alamo, IEEE Trans. Electron Devices 57, 297 (2010). https://doi.org/10.1109/TED.2009.2035031, Google ScholarCrossref
  4. 4. International Technology Roadmap for Semiconductors, available online at http://public.itrs.net, Google Scholar
  5. 5. E. O’Connor, R. D. Long, K. Cherkaoui, K. K. Thomas, F. Chalvet, I. M. Povey, M. E. Pemble, P. K. Hurley, B. Brennan, G. Hughes, and S. B. Newcomb, Appl. Phys. Lett. 92, 022902 (2008). https://doi.org/10.1063/1.2829586, Google ScholarScitation
  6. 6. B. Brennan, S. McDonnell, and G. Hughes, Thin Solid Films 518, 1980 (2010). https://doi.org/10.1016/j.tsf.2009.07.146, Google ScholarCrossref
  7. 7. D. Sheela and N. Dasgupta, Semicond. Sci. Technol. 23, 035018 (2008). https://doi.org/10.1088/0268-1242/23/3/035018, Google ScholarCrossref
  8. 8. S. Arabasz, E. Bergignat, G. Hollinger, and J. Szuber, Vacuum 80, 888 (2006). https://doi.org/10.1016/j.vacuum.2005.11.067, Google ScholarCrossref, ISI
  9. 9. H. Sugahara, M. Oshima, H. Oigawa, Y. Shigekawa, and Y. Nannichi, J. Appl. Phys. 69, 4349 (1991). https://doi.org/10.1063/1.348380, Google ScholarScitation
  10. 10. M. G. Kang, S. H. Sa, H. H. Park, K. S. Suh, and J. L. Lee, Mater. Sci. Eng., B 46, 65 (1997). https://doi.org/10.1016/S0921-5107(96)01933-2, Google ScholarCrossref
  11. 11. M. G. Kang, H. H. Park, K. S. Suh, and J. L. Lee, Thin Solid Films 290–291, 328 (1996). https://doi.org/10.1016/S0040-6090(96)08970-5, Google ScholarCrossref
  12. 12. P. T. Chen, Y. Sun, E. Kim, P. C. McIntyre, W. Tsai, M. Garner, P. Pianetta, Y. Nishi, and C. O. Chui, J. Appl. Phys. 103, 034106 (2008). https://doi.org/10.1063/1.2838471, Google ScholarScitation, ISI
  13. 13. D. Shahrjerdi, D. I. Garcia-Gutierrez, T. Akyol, S. R. Bank, E. Tutuc, J. C. Lee, and S. K. Banerjee, Appl. Phys. Lett. 91, 193503 (2007). https://doi.org/10.1063/1.2806190, Google ScholarScitation
  14. 14. L. Geelhaar, R. A. Bartynski, F. Ren, M. Schnoes, and D. N. Buckley, J. Appl. Phys. 80, 3076 (1996). https://doi.org/10.1063/1.363130, Google ScholarScitation
  15. 15. B. Shin, D. Choi, J. S. Harris, and P. C. McIntyre, Appl. Phys. Lett. 93, 052911 (2008). https://doi.org/10.1063/1.2966357, Google ScholarScitation, ISI
  16. 16. M. Milojevic, C. L. Hinkle, F. S. Aguirre-Tostado, H. C. Kim, E. M. Vogel, J. Kim, and R. M. Wallace, Appl. Phys. Lett. 93, 252905 (2008). https://doi.org/10.1063/1.3054348, Google ScholarScitation, ISI
  17. 17. D. Paget, J. E. Bonnet, V. L. Berkovits, P. Chiaradia, and J. Avila, Phys. Rev. B 53, 4604 (1996). https://doi.org/10.1103/PhysRevB.53.4604, Google ScholarCrossref
  18. 18. P. Moriarty, B. Murphy, L. Roberts, A. A. Cafolla, L. Koenders, P. Bailey, and G. Hughes, Phys. Rev. B 50, 14237 (1994). https://doi.org/10.1103/PhysRevB.50.14237, Google ScholarCrossref, ISI
  19. 19. H. Morota and S. Adachi, J. Appl. Phys. 105, 043508 (2009). https://doi.org/10.1063/1.3078178, Google ScholarScitation, ISI
  20. 20. M. V. Lebedev, E. Mankel, T. Mayer, and W. Jaegermann, J. Phys. Chem. C 112, 18510 (2008). Google ScholarCrossref
  21. 21. F. J. Palomares, M. Alonso, I. Jimenez, J. Avila, J. L. Sacedon, and F. Soria, Surf. Sci. 482–485, 121 (2001). https://doi.org/10.1016/S0039-6028(00)01006-2, Google ScholarCrossref
  22. 22. M. Beerbom, T. Mayer, W. Jaegermann, D. R. Batchelor, and D. Schmeier, Anal. Bioanal. Chem. 374, 650 (2002). https://doi.org/10.1007/s00216-002-1404-x, Google ScholarCrossref
  23. 23. Z. Liu, Y. Sun, F. Machuca, P. Pianetta, and W. E. Spicer, J. Vac. Sci. Technol. A 21, 212 (2003). https://doi.org/10.1116/1.1532737, Google ScholarCrossref, ISI
  24. 24. M. V. Lebedev, D. Ensling, R. Hunger, T. Mayer, and W. Jaegermann, Appl. Surf. Sci. 229, 226 (2004). https://doi.org/10.1016/j.apsusc.2004.01.067, Google ScholarCrossref
  25. 25. M. Beerbom, Th. Mayer, and W. Jaegermann, J. Phys. Chem. B 104, 8503 (2000). https://doi.org/10.1021/jp0011342, Google ScholarCrossref
  26. 26. D. Ercolani, M. Lazzarino, G. Mori, B. Ressel, L. Sorba, A. Locatelli, S. Cherifi, A. Ballestrazzi, and S. Heun, Adv. Funct. Mater. 15, 587 (2005). https://doi.org/10.1002/adfm.200400033, Google ScholarCrossref
  27. 27. Y. Sun, P. Pianetta, P. -T. Chen, M. Kobayashi, Y. Nishi, N. Goel, M. Garner, and W. Tsai, Appl. Phys. Lett. 93, 194103 (2008). https://doi.org/10.1063/1.3025852, Google ScholarScitation, ISI
  28. 28. D. Y. Petrovykh, J. M. Sullivan, and L. J. Whitman, Surf. Interface Anal. 37, 989 (2005). https://doi.org/10.1002/sia.2095, Google ScholarCrossref
  29. 29. C. C. Surdu-Bob, S. O. Saied, and J. L. Sullivan, Appl. Surf. Sci. 183, 126 (2001). https://doi.org/10.1016/S0169-4332(01)00583-9, Google ScholarCrossref, ISI
  30. 30. T. Ishikawa and H. Ikoma, Jpn. J. Appl. Phys., Part 1 31, 3981 (1992). https://doi.org/10.1143/JJAP.31.3981, Google ScholarCrossref
  31. 31. J. Ivanco, T. Kubota, and H. Kobayashi, J. Appl. Phys. 97, 073712 (2005). https://doi.org/10.1063/1.1873037, Google ScholarScitation, ISI
  32. 32. G. Landgren, R. Ludeke, Y. Jugnet, J. F. Morar, and F. J. Himpsel, J. Vac. Sci. Technol. B 2, 351 (1984). https://doi.org/10.1116/1.582823, Google ScholarCrossref
  33. 33. G. Hollinger, R. Skheyta-Kabbani, and M. Gendry, Phys. Rev. B 49, 11159 (1994). https://doi.org/10.1103/PhysRevB.49.11159, Google ScholarCrossref, ISI
  34. 34. S. Arabasz, E. Bergignat, G. Hollinger, and J. Szuber, Appl. Surf. Sci. 252, 7659 (2006). https://doi.org/10.1016/j.apsusc.2006.03.061, Google ScholarCrossref
  35. 35. H. Chernoff and E. L. Lehmann, Ann. Math. Stat. 25, 579 (1954). https://doi.org/10.1214/aoms/1177728726, Google ScholarCrossref
  36. 36. M. P. Seah and M. T. Brown, J. Electron Spectrosc. Relat. Phenom. 95, 71 (1998). https://doi.org/10.1016/S0368-2048(98)00204-7, Google ScholarCrossref
  37. 37. J. M. Conny, C. J. Powell, and L. Currie, Surf. Interface Anal. 26, 939 (1998). https://doi.org/10.1002/(SICI)1096-9918(199811)26:12<939::AID-SIA441>3.0.CO;2-V, Google ScholarCrossref
  38. 38. C. L. Hinkle, M. Milojevic, B. Brennan, A. M. Sonnet, F. S. Aguirre-Tostado, G. Hughes, E. M. Vogel, and R. M. Wallace, Appl. Phys. Lett. 94, 162101 (2009). https://doi.org/10.1063/1.3120546, Google ScholarScitation, ISI
  39. 39. A. Herrera-Gómez, P. Pianetta, D. Marshall, E. Nelson, and W. E. Spicer, Phys. Rev. B 61, 12988 (2000) (AANALYZER is software for XPS peak deconvolution and available at http://qro.cinvestav.mx/~aanalyzer/). https://doi.org/10.1103/PhysRevB.61.12988, Google ScholarCrossref, ISI
  40. 40. M. Larive, G. Jezequel, J. P. Landesman, F. Solal, J. Nagle, B. Lepine, A. Taleb-Ibrahimi, G. Indlekofer, and X. Marcadet, Surf. Sci. 304, 298 (1994). https://doi.org/10.1016/0039-6028(94)91340-4, Google ScholarCrossref
  41. 41. J. Robertson, Appl. Phys. Lett. 94, 152104 (2009). https://doi.org/10.1063/1.3120554, Google ScholarScitation, ISI
  42. 42. B. Brennan, M. Milojevic, C. L. Hinkle, F. S. Aguirre-Tostado, G. Hughes, and R. M. Wallace (unpublished). Google Scholar
  43. 43. F. J. Himpsel, F. R. McFeely, A. Taleb-Ibrahimi, J. A. Yarmoff, and G. Hollinger, Phys. Rev. B 38, 6084 (1988). https://doi.org/10.1103/PhysRevB.38.6084, Google ScholarCrossref, ISI
  44. 44. G. Alvarez and H. J. Silverstone, Phys. Rev. A 40, 3690 (1989). https://doi.org/10.1103/PhysRevA.40.3690, Google ScholarCrossref
  45. 45. J. J. Yeh and I. Lindau, At. Data Nucl. Data Tables 32, 1 (1985). https://doi.org/10.1016/0092-640X(85)90016-6, Google ScholarCrossref, ISI
  46. 46. A. B. McLean, Surf. Sci. 220, L671 (1989). https://doi.org/10.1016/0039-6028(89)90456-1, Google ScholarCrossref
  47. 47. B. Brennan, Ph.D. thesis, Dublin City University, 2010. Google Scholar
  48. 48. V. Chab, L. Pekarek, I. Ulrych, J. Suchy, K. C. Prince, M. Peloi, M. Evans, C. Comicioli, M. Zacchigna, and C. Crotti, Surf. Sci. 377–379, 261 (1997). https://doi.org/10.1016/S0039-6028(96)01378-7, Google ScholarCrossref
  49. 49. T. Ishikawa and H. Ikoma, Jpn. J. Appl. Phys., Part 2 32, L607 (1993). https://doi.org/10.1143/JJAP.32.L607, Google ScholarCrossref
  50. 50. C. J. Powell, A. Jablonski, W. S. M. Werner, and W. Smekal, Appl. Surf. Sci. 239, 470 (2005). https://doi.org/10.1016/j.apsusc.2004.06.012, Google ScholarCrossref, ISI
  1. © 2010 American Institute of Physics.