No Access Submitted: 30 March 2010 Accepted: 23 June 2010 Published Online: 30 September 2010
Biomicrofluidics 4, 032204 (2010); https://doi.org/10.1063/1.3466882
more...View Affiliations
View Contributors
  • Say Hwa Tan
  • Nam-Trung Nguyen
  • Yong Chin Chua
  • Tae Goo Kang
Rapid prototyping of polydimethylsiloxane (PDMS) is often used to build microfluidic devices. However, the inherent hydrophobic nature of the material limits the use of PDMS in many applications. While different methods have been developed to transform the hydrophobic PDMS surface to a hydrophilic surface, the actual implementation proved to be time consuming due to differences in equipment and the need for characterization. This paper reports a simple and easy protocol combining a second extended oxygen plasma treatments and proper storage to produce usable hydrophilic PDMS devices. The results show that at a plasma power of 70 W, an extended treatment of over 5 min would allow the PDMS surface to remain hydrophilic for more than 6 h. Storing the treated PDMS devices in de-ionized water would allow them to maintain their hydrophilicity for weeks. Atomic force microscopy analysis shows that a longer oxygen plasma time produces a smoother surface.
The authors gratefully acknowledge the support from the Agency of Science, Technology and Research (A*STAR), Singapore (Grant No. SERC 052 101 0108 “Droplet-based micro/nanofluidics”).
  1. 1. J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, and G. M. Whitesides, Electrophoresis 21, 27 (2000). https://doi.org/10.1002/(SICI)1522-2683(20000101)21:1<27::AID-ELPS27>3.0.CO;2-C, Google ScholarCrossref
  2. 2. J. C. McDonald and G. M. Whitesides, Acc. Chem. Res. 35, 491 (2002). https://doi.org/10.1021/ar010110q, Google ScholarCrossref
  3. 3. M. Kakuta, F. G. Bessoth, and A. Manz, Chem. Rec. 1, 395 (2001). https://doi.org/10.1002/tcr.1023, Google ScholarCrossref
  4. 4. D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, Anal. Chem. 70, 4974 (1998). https://doi.org/10.1021/ac980656z, Google ScholarCrossref
  5. 5. G. F. Christopher and S. L. Anna, J. Phys. D: Appl. Phys. 40, R319 (2007). https://doi.org/10.1088/0022-3727/40/19/R01, Google ScholarCrossref
  6. 6. P. Garstecki, A. M. Gañán-Calvo, and G. M. Whitesides, Bull. Pol. Acad. Sci.: Tech. Sci. 53, 361 (2005). Google Scholar
  7. 7. Y. H. Dou, N. Bao, J. J. Xu, and H. Y. Chen, Electrophoresis 23, 3558 (2002). https://doi.org/10.1002/1522-2683(200210)23:20<3558::AID-ELPS3558>3.0.CO;2-# Google ScholarCrossref
  8. 8. N. A. Alcantar, E. S. Aydil, and J. N. Israelachvili, J. Biomed. Mater. Res. 51, 343 (2000). https://doi.org/10.1002/1097-4636(20000905)51:3<343::AID-JBM7>3.0.CO;2-D, Google ScholarCrossref
  9. 9. B. T. Ginn and O. Steinbock, Langmuir 19, 8117 (2003). https://doi.org/10.1021/la034138h, Google ScholarCrossref
  10. 10. D. T. Eddington, J. P. Puccinelli, and D. J. Beebe, Sens. Actuators B 114, 170 (2006). https://doi.org/10.1016/j.snb.2005.04.037, Google ScholarCrossref
  11. 11. D. Xiao, H. Zhang, and M. Wirth, Langmuir 18, 9971 (2002). https://doi.org/10.1021/la0205553, Google ScholarCrossref
  12. 12. H. Hillborg, J. F. Ankner, U. W. Gedde, G. D. Smith, H. K. Yasuda, and K. Wikström, Polymer 41, 6851 (2000). https://doi.org/10.1016/S0032-3861(00)00039-2, Google ScholarCrossref
  13. 13. S. Bhattacharya, A. Datta, J. M. Berg, and S. Gangopadhyay, J. Microelectromech. Syst. 14, 590 (2005). https://doi.org/10.1109/JMEMS.2005.844746, Google ScholarCrossref
  14. 14. R. A. Lawton, C. R. Price, A. F. Runge, W. J. Doherty Iii, and S. S. Saavedra, Colloids Surf., A 253, 213 (2005). https://doi.org/10.1016/j.colsurfa.2004.11.010, Google ScholarCrossref
  15. 15. D. Bodas and C. Khan-Malek, Sens. Actuators B 123, 368 (2007). https://doi.org/10.1016/j.snb.2006.08.037, Google ScholarCrossref
  16. 16. M. Morra, E. Occhiello, R. Marola, F. Garbassi, P. Humphrey, and D. Johnson, J. Colloid Interface Sci. 137, 11 (1990). https://doi.org/10.1016/0021-9797(90)90038-P, Google ScholarCrossref
  17. 17. A. Tóth, I. Bertóti, M. Blazsó, G. Bánhegyi, A. Bognar, and P. Szaplonczay, J. Appl. Polym. Sci. 52, 1293 (1994). https://doi.org/10.1002/app.1994.070520914, Google ScholarCrossref
  18. 18. J. Kim, M. K. Chaudhury, M. J. Owen, and T. Orbeck, J. Colloid Interface Sci. 244, 200 (2001). https://doi.org/10.1006/jcis.2001.7909, Google ScholarCrossref
  19. 19. I. J. Chen and E. Lindner, Langmuir 23, 3118 (2007). https://doi.org/10.1021/la0627720, Google ScholarCrossref
  20. 20. M. Hashimoto, S. S. Shevkoplyas, B. Zasońska, T. Szymborski, P. Garstecki, and G. M. Whitesides, Small 4, 1795 (2008). https://doi.org/10.1002/smll.200800591, Google ScholarCrossref
  21. 21. J. Friend and L. Yeo, Biomicrofluidics 4, 026502 (2010). https://doi.org/10.1063/1.3259624, Google ScholarScitation, ISI
  22. 22. J. Zhou, A. V. Ellis, and N. H. Voelcker, Electrophoresis 31, 2 (2010). https://doi.org/10.1002/elps.200900475, Google ScholarCrossref
  23. 23. A. Y. N. Hui, G. Wang, B. C. Lin, and W. T. Chan, Lab Chip 5, 1173 (2005). https://doi.org/10.1039/b504271b, Google ScholarCrossref
  24. 24. X. Zhu, K. L. Mills, P. R. Peters, J. H. Bahng, E. H. Liu, J. Shim, K. Naruse, M. E. Csete, M. D. Thouless, and S. Takayama, Nature Mater. 4, 403 (2005). https://doi.org/10.1038/nmat1365, Google ScholarCrossref
  25. 25. M. J. Owen and P. J. Smith, J. Adhes. Sci. Technol. 8, 1063 (1994). https://doi.org/10.1163/156856194X00942, Google ScholarCrossref
  26. 26. A. B. Murphy and C. J. Arundell, Plasma Chem. Plasma Process. 14, 451 (1994). https://doi.org/10.1007/BF01570207, Google ScholarCrossref
  27. 27. L. Lavielle and J. Schultz, J. Colloid Interface Sci. 106, 438 (1985). https://doi.org/10.1016/S0021-9797(85)80017-5, Google ScholarCrossref
  1. © 2010 American Institute of Physics.