No Access Submitted: 15 January 2010 Accepted: 21 February 2010 Published Online: 26 April 2010
Appl. Phys. Lett. 96, 173501 (2010); https://doi.org/10.1063/1.3409475
more...View Affiliations
View Contributors
  • Seoung-Ki Lee
  • Houk Jang
  • Musarrat Hasan
  • Jae Bon Koo
  • Jong-Hyun Ahn
This letter presents a method to fabricate single-crystal silicon wires from (100) wafer and print them onto thin plastic substrates for high-performance, mechanically flexible, thin-film transistors by dry transfer printing. Electrical measurements indicate excellent performance, with a per ribbon mobility of 580cm2/Vs, subthreshold voltage of 100 mV/dec and on/off ratios >107. The inverter shows good performance and voltage gains of 2.5 at 3 V supply voltage. In addition, these devices revealed stable performance at bending configuration, an important feature essential for flexible electronic systems.
This work was supported by the IT R&D program of Ministry of Knowledge Economy of Korea (MKE, Grant No. 2008-F024-01, Development of Mobile Flexible IOP Platform) and the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (Grant Nos. 331-2008-1-D00265 and 2009-0083540).
  1. 1. S. R. Forrest, Nature (London) 428, 911 (2004). https://doi.org/10.1038/nature02498, Google ScholarCrossref, ISI
  2. 2. R. H. Reuss, B. R. Chalamala, A. Moussessian, M. G. Kane, A. Kumar, D. C. Zhang, J. A. Rorers, M. Hatalis, D. Temple, G. Moddel, B. J. Eliasson, M. J. Estes, J. Kunze, E. S. Handy, E. S. Harmon, D. B. Salzman, J. M. Woodall M. Ashraf Alam, J. Y. Murthy, S. C. Jacobsen, M. Olivier, D. Markus, P. M. Campbell, and E. Snow, Proc. IEEE 93, 1239 (2005). https://doi.org/10.1109/JPROC.2005.851237, Google ScholarCrossref
  3. 3. C. M. Lieber, Solid State Commun. 107, 607 (1998). https://doi.org/10.1016/S0038-1098(98)00209-9, Google ScholarCrossref, ISI
  4. 4. M. C. McAlpine, R. S. Friedman, S. Jin, K. -h. Lin, W. U. Wang, and C. M. Lieber, Nano Lett. 3, 1531 (2003). https://doi.org/10.1021/nl0346427, Google ScholarCrossref, ISI
  5. 5. A. Javey, S. Nam, R. S. Friedman, H. Yan, and C. M. Lieber, Nano Lett. 7, 773 (2007). https://doi.org/10.1021/nl063056l, Google ScholarCrossref, ISI
  6. 6. N. A. Melosh, A. Boukai, F. Diana, B. Gerardot, A. Badolato, P. M. Petroff, and J. R. Heath, Science 300, 112 (2003). https://doi.org/10.1126/science.1081940, Google ScholarCrossref, ISI
  7. 7. E. Menard, K. J. Lee, D. Y. Khang, R. G. Nuzzo, and J. A. Rogers, Appl. Phys. Lett. 84, 5398 (2004). https://doi.org/10.1063/1.1767591, Google ScholarScitation, ISI
  8. 8. Y. Sun, D. -Y. Khang, F. Hua, K. Hurley, R. G. Nuzzo, and J. A. Rogers, Adv. Funct. Mater. 15, 30 (2005). https://doi.org/10.1002/adfm.200400411, Google ScholarCrossref, ISI
  9. 9. J. -H. Ahn, H. -S. Kim, E. Menard, K. J. Lee, Z. Zhu, D. -H. Kim, R. G. Nuzzo, and J. A. Rogers, Appl. Phys. Lett. 90, 213501 (2007). https://doi.org/10.1063/1.2742294, Google ScholarScitation
  10. 10. H. -C. Yuan and Z. Ma, Appl. Phys. Lett. 89, 212105 (2006). https://doi.org/10.1063/1.2397038, Google ScholarScitation, ISI
  11. 11. S. Mack, M. A. Meitl, A. J. Baca, Z. -T. Zhu, and J. A. Rogers, Appl. Phys. Lett. 88, 213101 (2006). https://doi.org/10.1063/1.2206688, Google ScholarScitation, ISI
  12. 12. A. J. Baca, M. A. Meitl, H. C. Ko, S. Mack, H. -S. Kim, J. Dong, P. M. Ferreira, and J. A. Rogers, Adv. Funct. Mater. 17, 3051 (2007). https://doi.org/10.1002/adfm.200601161, Google ScholarCrossref, ISI
  13. 13. M. Yang, M. Leong, L. Shi, K. Chan, V. Chant, A. Chout, E. Gusev, K. Jenkins, D. Boyd, Y. Ninomiya, D. Pendleton, Y. Surpris, D. Heenan, J. Ott, K. Guarini, C. D'Emic, M. Cobb, P. Mooney, B. To, N. Rovedo, J. Benedict, R. Mo, and H. Ng, Tech. Dig. - Int. Electron Devices Meet. 2003, 453. Google Scholar
  1. © 2010 American Institute of Physics.