No Access Submitted: 29 October 2009 Accepted: 07 December 2009 Published Online: 22 April 2010
Journal of Applied Physics 107, 09E712 (2010); https://doi.org/10.1063/1.3360583
more...View Affiliations
View Contributors
  • J. Cao
  • P. P. Freitas
A full Wheatstone bridge sensor composed of linear MgO based magnetic tunnel junctions (MTJ) was designed and achieved. The magnetization direction of reference layers in the required bridge arms was successfully switched by using local current heating method, also demonstrating a viable method of manipulation of pinning direction for exchange bias system on a chip level. The final bridge output shows approximately full signal of individual MTJ but almost null output in the absence of any applied sensing field and small offset of voltage and field.
One of the authors (J. Cao) would like to thank Dr. Ricardo Ferreira and Rui Chaves for their fruitful discussions and Dr. Jerôme Borme for wire bonding. This work was partially supported by projects FP6-2005-NEST-043288 (Bionano-switch) and SE2A (ENIAC/NTEC/002/2008).
  1. 1. M. Tondra, J. M. Daughton, D. Wang, R. S. Beech, A. Fink, and J. A. Taylor, J. Appl. Phys. 83, 6688 (1998). https://doi.org/10.1063/1.367861, Google ScholarScitation, ISI
  2. 2. G. Malinowski, M. Hehn, F. Montaigne, A. Schuhl, C. Duret, R. Nantua, and G. Chaumontet, Sens. Actuators, A 144, 263 (2008). https://doi.org/10.1016/j.sna.2008.02.009, Google ScholarCrossref
  3. 3. J. Daughton, Proc. IEEE 91, 681 (2003). https://doi.org/10.1109/JPROC.2003.811806, Google ScholarCrossref
  4. 4. J. Cao, J. Kanak, T. Stobiecki, P. Wisniowski, and P. P. Freitas, IEEE Trans. Magn. 45, 3464 (2009). https://doi.org/10.1109/TMAG.2009.2025382, Google ScholarCrossref
  5. 5. P. Wisniowski, J. M. Almeida, S. Cardoso, N. P. Barradas, and P. P. Freitas, J. Appl. Phys. 103, 07A910 (2008). https://doi.org/10.1063/1.2838626, Google ScholarScitation, ISI
  6. 6. Y. M. Lee, J. Hayakawa, S. Ikeda, F. Matsukura, and H. Ohno, Appl. Phys. Lett. 89, 042506 (2006). https://doi.org/10.1063/1.2234720, Google ScholarScitation, ISI
  7. 7. D. Wang, J. M. Daughton, Z. Qian, C. Nordman, M. Tondra, and A. Pohm, J. Appl. Phys. 93, 8558 (2003). https://doi.org/10.1063/1.1556982, Google ScholarScitation, ISI
  8. 8. B. D. Schrag, A. Anguelouch, S. Ingvarsson, G. Xiao, Y. Lu, P. L. Trouilloud, A. Gupta, R. A. Wanner, W. J. Gallagher, P. M. Rice, and S. S. P. Parkin, Appl. Phys. Lett. 77, 2373 (2000). https://doi.org/10.1063/1.1315633, Google ScholarScitation, ISI
  9. 9. M. Yoshikawa, T. Kai, M. Amano, E. Kitagawa, T. Nagase, M. Nakayama, S. Takahashi, T. Ueda, T. Kishi, K. Tsuchida, S. Ikegawa, Y. Asao, H. Yoda, Y. Fukuzumi, K. Nagahara, H. Numata, H. Hada, N. Ishiwata, and S. Tahara, J. Appl. Phys. 97, 10P508 (2005). https://doi.org/10.1063/1.1859179, Google ScholarScitation, ISI
  10. 10. M. Rickart, A. Guedes, J. Ventura, J. B. Sousa, and P. P. Freitas, J. Appl. Phys. 97, 10K110 (2005). https://doi.org/10.1063/1.1854411, Google ScholarScitation
  11. 11. Y. Wang, Z. M. Zeng, X. F. Han, X. G. Zhang, X. C. Sun, and Z. Zhang, Phys. Rev. B 75, 214424 (2007). https://doi.org/10.1103/PhysRevB.75.214424, Google ScholarCrossref
  1. © 2010 American Institute of Physics.