Published Online: 29 January 2010
Accepted: December 2009
Journal of Mathematical Physics 51, 015218 (2010); https://doi.org/10.1063/1.3276100
more...View Affiliations
The special theory of relativity and quantum mechanics merge in the key principle of quantum field theory, the principle of locality. We review some examples of its “unreasonable effectiveness” in giving rise to most of the conceptual and structural frame of quantum field theory, especially in the absence of massless particles. This effectiveness shows up best in the formulation of quantum field theory in terms of operator algebras of local observables; this formulation is successful in digging out the roots of global gauge invariance, through the analysis of superselection structure and statistics, in the structure of the local observable quantities alone, at least for purely massive theories; but so far it seems unfit to cope with the principle of local gauge invariance. This problem emerges also if one attempts to figure out the fate of the principle of locality in theories describing the gravitational forces between elementary particles as well. An approach based on the need to keep an operational meaning, in terms of localization of events, of the notion of space-time, shows that, in the small, the latter must loose any meaning as a classical pseudo-Riemannian manifold, locally based on Minkowski space, but should acquire a quantum structure at the Planck scale. We review the geometry of a basic model of quantum space-time and some attempts to formulate interaction of quantum fields on quantum space-time. The principle of locality is necessarily lost at the Planck scale, and it is a crucial open problem to unravel a replacement in such theories which is equally mathematically sharp, namely, a principle where the general theory of relativity and quantum mechanics merge, which reduces to the principle of locality at larger scales. Besides exploring its fate, many challenges for the principle of locality remain; among them, the analysis of superselection structure and statistics also in the presence of massless particles, and to give a precise mathematical formulation to the measurement process in local and relativistic terms; for which we outline a qualitative scenario which avoids the Einstein, Podolski, and Rosen paradox.
  1. 1. R. Haag, Local Quantum Physics: Fields, Particles, Algebras (Springer-Verlag, Berlin, 1994). Google Scholar
  2. 2. H. Araki, Mathematical Theory of Quantum Fields (Oxford University Press, Oxford, 1999). Google Scholar
  3. 3. J. Bisognano and E. Wichmann, J. Math. Phys. 16, 985 (1975). https://doi.org/10.1063/1.522605, Google ScholarScitation
  4. 4. D. Buchholz, S. Doplicher, R. Longo, and J. E. Roberts, “A new look at goldstone’s theorem,” special issue of Rev. Math. Phys. 4, 47 (1992). https://doi.org/10.1142/S0129055X92000157, Google ScholarCrossref
  5. 5. D. Buchholz, C. D’Antoni, and K. Fredenhagen, Commun. Math. Phys. 111, 123 (1987). https://doi.org/10.1007/BF01239019, Google ScholarCrossref
  6. 6. D. Buchholz, Commun. Math. Phys. 85, 49 (1982). https://doi.org/10.1007/BF02029133, Google ScholarCrossref
  7. 7. S. Doplicher, R. Haag, and J. E. Roberts, Commun. Math. Phys. 23, 199 (1971). https://doi.org/10.1007/BF01877742, Google ScholarCrossref
  8. 8. D. Buchholz and K. Fredenhagen, Commun. Math. Phys. 84, 1 (1982). https://doi.org/10.1007/BF01208370, Google ScholarCrossref
  9. 9. S. Doplicher, R. Haag, and J. E. Roberts, Commun. Math. Phys. 35, 49 (1974). https://doi.org/10.1007/BF01646454, Google ScholarCrossref
  10. 10. S. Doplicher and J. E. Roberts, Invent. Math. 98, 157 (1989). https://doi.org/10.1007/BF01388849, Google ScholarCrossref
  11. 11. S. Doplicher and J. E. Roberts, Ann. Math. 130, 75 (1989). https://doi.org/10.2307/1971477, Google ScholarCrossref
  12. 12. S. Doplicher and J. E. Roberts, Commun. Math. Phys. 28, 331 (1972). https://doi.org/10.1007/BF01645634, Google ScholarCrossref
  13. 13. P. Deligne, Grothendieck Festschrift (Birkhauser, Boston, MA, 1990), Vol. 2, p. 111. Google Scholar
  14. 14. H. Halvorson and M. Mueger, Handbook of the Philosophy of Physics (Elsevier, Amsterdam/North-Holland, Amsterdam, 2006); Google Scholar
    e-print arXiv:math-ph/0602036v1. Google Scholar
  15. 15. K. Fredenhagen, K. -H. Rehren, and B. Schroer, Commun. Math. Phys. 125, 201 (1989). https://doi.org/10.1007/BF01217906, Google ScholarCrossref
  16. 16. R. Longo, Commun. Math. Phys. 126, 217 (1989). https://doi.org/10.1007/BF02125124, Google ScholarCrossref
  17. 17. S. Doplicher, R. Haag, and J. E. Roberts, Commun. Math. Phys. 15, 173 (1969). https://doi.org/10.1007/BF01645674, Google ScholarCrossref
  18. 18. K. Fredenhagen, Taniguchi Symposium on Condensed Matter Theory, Lake Biwa, Kashikojima, Japan, October 1993, Preprint DESY-94-071, 1994. Google Scholar
  19. 19. P. Bertozzini, R. Conti, and R. Longo, Commun. Math. Phys. 193, 471 (1998). https://doi.org/10.1007/s002200050337, Google ScholarCrossref
  20. 20. S. Carpi, Ann. Henri Poincare 4, 601 (2003) https://doi.org/10.1007/s00023-003-0140-x; Google ScholarCrossref
    S. Carpi, Commun. Math. Phys. 244, 261 (2004) https://doi.org/10.1007/s00220-003-0988-0; , Google ScholarCrossref
    R. Longo and F. Xu, Commun. Math. Phys. 251, 321 (2004). https://doi.org/10.1007/s00220-004-1063-1, , Google ScholarCrossref
  21. 21. K. Fredenhagen, Commun. Math. Phys. 79, 141 (1981). https://doi.org/10.1007/BF01208291, Google ScholarCrossref
  22. 22. D. Buchholz and H. Epstein, Fizika (Zagreb) 17, 329 (1985). Google Scholar
  23. 23. D. Guido and R. Longo, Commun. Math. Phys. 172, 517 (1995) https://doi.org/10.1007/BF02101806; Google ScholarCrossref
    D. Guido and R. Longo, Commun. Math. Phys.181, 11 (1996). https://doi.org/10.1007/BF02101672, , Google ScholarCrossref
  24. 24. D. Guido, R. Longo, J. E. Roberts, and R. Verch, Rev. Math. Phys. 13, 125 (2001). https://doi.org/10.1142/S0129055X01000557, Google ScholarCrossref
  25. 25. J. Mund, Commun. Math. Phys. 286, 1159 (2009). https://doi.org/10.1007/s00220-008-0628-9, Google ScholarCrossref
  26. 26. S. Doplicher and J. E. Roberts, Commun. Math. Phys. 131, 51 (1990). https://doi.org/10.1007/BF02097680, Google ScholarCrossref
  27. 27. S. Doplicher and G. Piacitelli, Rev. Math. Phys. 14, 873 (2002). https://doi.org/10.1142/S0129055X02001430, Google ScholarCrossref
  28. 28. S. Doplicher and R. Longo, Invent. Math. 75, 493 (1984). https://doi.org/10.1007/BF01388641, Google ScholarCrossref
  29. 29. D. Buchholz and E. Wichmann, Commun. Math. Phys. 106, 321 (1986). https://doi.org/10.1007/BF01454978, Google ScholarCrossref
  30. 30. S. Doplicher, Commun. Math. Phys. 85, 73 (1982). https://doi.org/10.1007/BF02029134, Google ScholarCrossref
  31. 31. S. Doplicher and R. Longo, Commun. Math. Phys. 88, 399 (1983). https://doi.org/10.1007/BF01213216, Google ScholarCrossref
  32. 32. D. Buchholz, S. Doplicher, and R. Longo, Ann. Phys. 170, 1 (1986). https://doi.org/10.1016/0003-4916(86)90086-2, Google ScholarCrossref
  33. 33. S. Carpi and R. Conti, Commun. Math. Phys. 253, 423 (2005) https://doi.org/10.1007/s00220-004-1135-2; Google ScholarCrossref
    e-print arXiv:math/0312033v1 [math.OA]. , Google Scholar
  34. 34. G. Morsella and L. Tomassini, “From global symmetries to local currents:the free (scalar) case in 4 dimensions,” Rev. Math. Phys. (to be published). Google Scholar
  35. 35. D. Buchholz, C. D’Antoni, and R. Longo, J. Funct. Anal. 88, 233 (1990) https://doi.org/10.1016/0022-1236(90)90104-S; Google ScholarCrossref
    D. Buchholz, C. D’Antoni, and R. Longo, Commun. Math. Phys. 129, 115 (1990). https://doi.org/10.1007/BF02096782, , Google ScholarCrossref
  36. 36. D. Buchholz and R. Verch, Rev. Math. Phys. 7, 1195 (1995). https://doi.org/10.1142/S0129055X9500044X, Google ScholarCrossref
  37. 37. C. D’Antoni, G. Morsella, and R. Verch, Ann. Henri Poincare 5, 809 (2004). https://doi.org/10.1007/s00023-004-0183-7, Google ScholarCrossref
  38. 38. H. Bostelmann, C. D’Antoni, and G. Morsella, Commun. Math. Phys. 285, 763 (2009). https://doi.org/10.1007/s00220-008-0613-3, Google ScholarCrossref
  39. 39. R. Conti and G. Morsella, Ann. Henri Poincare 10, 485 (2009). https://doi.org/10.1007/s00023-009-0418-8, Google ScholarCrossref
  40. 40. R. Brunetti and K. Fredenhagen, e-print arXiv:0901.2063. Google Scholar
  41. 41. R. Brunetti, M. Duetsch, and K. Fredenhagen, e-print arXiv:0901.2038. Google Scholar
  42. 42. R. Longo, Commun. Math. Phys. 159, 133 (1994). https://doi.org/10.1007/BF02100488, Google ScholarCrossref
  43. 43. S. Doplicher, C. Pinzari, and J. E. Roberts, Int. J. Math. 12, 415 (2001) https://doi.org/10.1142/S0129167X01000770; Google ScholarCrossref
    e-print arXiv:math/0001096v3 [math.OA]. , Google Scholar
  44. 44. M. Mueger, e-print arXiv:0909.2537. Google Scholar
  45. 45. R. Longo, http://www.mat.uniroma2.it/~longo. Google Scholar
  46. 46. S. Carpi, R. Hillier, Y. Kawahigashi, and R. Longo, “Spectral triples andthe super-Virasoro algebra,” Commun. Math. Phys. (to be published). Google Scholar
  47. 47. R. Longo, Commun. Math. Phys. 222, 45 (2001) https://doi.org/10.1007/s002200100492; Google ScholarCrossref
    e-print arXiv:math/0003082v2 [math.OA]. , Google Scholar
  48. 48. D. Buchholz, S. Doplicher, G. Morchio, J. E. Roberts, and F. Strocchi, Operator Algebras and Quantum Field Theory (International Press, Boston, 1997), pp. 647–660. Google Scholar
  49. 49. D. Buchholz, S. Doplicher, G. Morchio, J. E. Roberts, and F. Strocchi, Ann. Phys. 290, 53 (2001). https://doi.org/10.1006/aphy.2001.6136, Google ScholarCrossref
  50. 50. D. Buchholz, S. Doplicher, G. Morchio, J. E. Roberts, and F. Strocchi, Prog. Math. 251, 49 (2007). https://doi.org/10.1007/978-3-7643-7434-1_5, Google ScholarCrossref
  51. 51. J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, 1955). Google Scholar
  52. 52. S. Doplicher, e-print arXiv:0908.0480. Google Scholar
  53. 53. A. Daneri, G. M. Loinger, and A. Prosperi, Nucl. Phys. 33, 297 (1962). https://doi.org/10.1016/0029-5582(62)90528-X, Google ScholarCrossref
  54. 54. K. Hepp, Helv. Phys. Acta 45, 237 (1972). Google Scholar
  55. 55. W. H. Zurek, Phys. Rev. Lett. 90, 120404 (2003). https://doi.org/10.1103/PhysRevLett.90.120404, Google ScholarCrossref
  56. 56. G. Sewell, Rep. Math. Phys. 56, 271 (2005). https://doi.org/10.1016/S0034-4877(05)80074-6, Google ScholarCrossref
  57. 57. M. Castagnino, S. Fortin, R. Laura, and O. Lombardi, e-print arXiv:0907.1337. Google Scholar
  58. 58. G. C. Ghirardi, e-print arXiv:0904.0958. Google Scholar
  59. 59. A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935). https://doi.org/10.1103/PhysRev.47.777, Google ScholarCrossref
  60. 60. K. E. Hellwig and K. Kraus, Phys. Rev. D 1, 566 (1970). https://doi.org/10.1103/PhysRevD.1.566, Google ScholarCrossref
  61. 61. A. Peres, Phys. Rev. A 61, 022117 (2000). https://doi.org/10.1103/PhysRevA.61.022117, Google ScholarCrossref
  62. 62. R. B. Griffiths, e-print arXiv:0908.2914. Google Scholar
  63. 63. A. Aspect, in Quantum (Un)speakables—From Bell to Quantum Information, edited by R. A. Bertlmann and A. Zeilinger (Springer, New York, 2002). Google Scholar
  64. 64. S. Doplicher, K. Fredenhagen, and J. E. Roberts, Phys. Lett. B 331, 39 (1994). https://doi.org/10.1016/0370-2693(94)90940-7, Google ScholarCrossref
  65. 65. S. Doplicher, K. Fredenhagen, and J. E. Roberts, Commun. Math. Phys. 172, 187 (1995). https://doi.org/10.1007/BF02104515, Google ScholarCrossref
  66. 66. S. Doplicher, K. Fredenhagen (unpublished). Google Scholar
  67. 67. D. Bahns, S. Doplicher, K. Fredenhagen, and G. Piacitelli, Commun. Math. Phys. 237, 221 (2003). Google ScholarCrossref
  68. 68. G. Piacitelli, e-print arXiv:0902.0575v1 [hep-th]. Google Scholar
  69. 69. J. Zahn, Phys. Rev. D 73, 105005 (2006) https://doi.org/10.1103/PhysRevD.73.105005; Google ScholarCrossref
    arXiv:hep-th/0603231v2. , Google Scholar
  70. 70. H. Grosse and G. Lechner, J. High Energy Phys. 0809, 131 (2008). https://doi.org/10.1088/1126-6708/2008/09/131, Google ScholarCrossref
  71. 71. D. Buchholz and S. J. Summers, e-print arXiv:0806.0349. Google Scholar
  72. 72. D. Bahns, S. Doplicher, K. Fredenhagen, and G. Piacitelli, Phys. Lett. B 533, 178 (2002). https://doi.org/10.1016/S0370-2693(02)01563-0, Google ScholarCrossref
  73. 73. G. Piacitelli, J. High Energy Phys. 0408, 031 (2004) https://doi.org/10.1088/1126-6708/2004/08/031; Google ScholarCrossref
    e-print: arXiv:hep-th/0403055v4. , Google Scholar
  74. 74. D. Bahns, J. Math. Phys. 45, 4640 (2004). https://doi.org/10.1063/1.1776644, Google ScholarScitation
  75. 75. M. Kossow, Phys. Rev. D 77, 065018 (2008) https://doi.org/10.1103/PhysRevD.77.065018; Google ScholarCrossref
    e-print arXiv:hep-th/0612111. , Google Scholar
  76. 76. J. Zahn, Ph.D. thesis, DESY-THESIS-2006-037, 2006; Google Scholar
    e-print arXiv:0707.2149. Google Scholar
  77. 77. C. Döscher and J. Zahn, Phys. Rev. D 73, 045024 (2006) https://doi.org/10.1103/PhysRevD.73.045024; Google ScholarCrossref
    e-print arXiv:hep-th/0512028. , Google Scholar
  78. 78. C. Döscher and J. Zahn, Ann. Henri Poincare 10, 35 (2009) https://doi.org/10.1007/s00023-009-0401-4; Google ScholarCrossref
    e-print arXiv:hep-th/0605062. , Google Scholar
  79. 79. S. Doplicher, e-print arXiv:hep-th/0105251. Google Scholar
  80. 80. S. Doplicher, J. Phys.: Conf. Ser. 53, 793 (2006) https://doi.org/10.1088/1742-6596/53/1/051; Google ScholarCrossref
    e-print arXiv:hep-th/0608124. , Google Scholar
  81. 81. D. Bahns, e-print arXiv:0908.4537. Google Scholar
  82. © 2010 American Institute of Physics.