Abstract
The special theory of relativity and quantum mechanics merge in the key principle of quantum field theory, the principle of locality. We review some examples of its “unreasonable effectiveness” in giving rise to most of the conceptual and structural frame of quantum field theory, especially in the absence of massless particles. This effectiveness shows up best in the formulation of quantum field theory in terms of operator algebras of local observables; this formulation is successful in digging out the roots of global gauge invariance, through the analysis of superselection structure and statistics, in the structure of the local observable quantities alone, at least for purely massive theories; but so far it seems unfit to cope with the principle of local gauge invariance. This problem emerges also if one attempts to figure out the fate of the principle of locality in theories describing the gravitational forces between elementary particles as well. An approach based on the need to keep an operational meaning, in terms of localization of events, of the notion of space-time, shows that, in the small, the latter must loose any meaning as a classical pseudo-Riemannian manifold, locally based on Minkowski space, but should acquire a quantum structure at the Planck scale. We review the geometry of a basic model of quantum space-time and some attempts to formulate interaction of quantum fields on quantum space-time. The principle of locality is necessarily lost at the Planck scale, and it is a crucial open problem to unravel a replacement in such theories which is equally mathematically sharp, namely, a principle where the general theory of relativity and quantum mechanics merge, which reduces to the principle of locality at larger scales. Besides exploring its fate, many challenges for the principle of locality remain; among them, the analysis of superselection structure and statistics also in the presence of massless particles, and to give a precise mathematical formulation to the measurement process in local and relativistic terms; for which we outline a qualitative scenario which avoids the Einstein, Podolski, and Rosen paradox.
REFERENCES
- 1. R. Haag, Local Quantum Physics: Fields, Particles, Algebras (Springer-Verlag, Berlin, 1994). Google Scholar
- 2. H. Araki, Mathematical Theory of Quantum Fields (Oxford University Press, Oxford, 1999). Google Scholar
- 3. J. Bisognano and E. Wichmann, J. Math. Phys. 16, 985 (1975). https://doi.org/10.1063/1.522605, Google ScholarScitation
- 4. D. Buchholz, S. Doplicher, R. Longo, and J. E. Roberts, “A new look at goldstone’s theorem,” special issue of Rev. Math. Phys. 4, 47 (1992). https://doi.org/10.1142/S0129055X92000157, Google ScholarCrossref
- 5. D. Buchholz, C. D’Antoni, and K. Fredenhagen, Commun. Math. Phys. 111, 123 (1987). https://doi.org/10.1007/BF01239019, Google ScholarCrossref
- 6. D. Buchholz, Commun. Math. Phys. 85, 49 (1982). https://doi.org/10.1007/BF02029133, Google ScholarCrossref
- 7. S. Doplicher, R. Haag, and J. E. Roberts, Commun. Math. Phys. 23, 199 (1971). https://doi.org/10.1007/BF01877742, Google ScholarCrossref
- 8. D. Buchholz and K. Fredenhagen, Commun. Math. Phys. 84, 1 (1982). https://doi.org/10.1007/BF01208370, Google ScholarCrossref
- 9. S. Doplicher, R. Haag, and J. E. Roberts, Commun. Math. Phys. 35, 49 (1974). https://doi.org/10.1007/BF01646454, Google ScholarCrossref
- 10. S. Doplicher and J. E. Roberts, Invent. Math. 98, 157 (1989). https://doi.org/10.1007/BF01388849, Google ScholarCrossref
- 11. S. Doplicher and J. E. Roberts, Ann. Math. 130, 75 (1989). https://doi.org/10.2307/1971477, Google ScholarCrossref
- 12. S. Doplicher and J. E. Roberts, Commun. Math. Phys. 28, 331 (1972). https://doi.org/10.1007/BF01645634, Google ScholarCrossref
- 13. P. Deligne, Grothendieck Festschrift (Birkhauser, Boston, MA, 1990), Vol. 2, p. 111. Google Scholar
- 14. H. Halvorson and M. Mueger, Handbook of the Philosophy of Physics (Elsevier, Amsterdam/North-Holland, Amsterdam, 2006); Google Scholar
e-print arXiv:math-ph/0602036v1. Google Scholar - 15. K. Fredenhagen, K. -H. Rehren, and B. Schroer, Commun. Math. Phys. 125, 201 (1989). https://doi.org/10.1007/BF01217906, Google ScholarCrossref
- 16. R. Longo, Commun. Math. Phys. 126, 217 (1989). https://doi.org/10.1007/BF02125124, Google ScholarCrossref
- 17. S. Doplicher, R. Haag, and J. E. Roberts, Commun. Math. Phys. 15, 173 (1969). https://doi.org/10.1007/BF01645674, Google ScholarCrossref
- 18. K. Fredenhagen, Taniguchi Symposium on Condensed Matter Theory, Lake Biwa, Kashikojima, Japan, October 1993, Preprint DESY-94-071, 1994. Google Scholar
- 19. P. Bertozzini, R. Conti, and R. Longo, Commun. Math. Phys. 193, 471 (1998). https://doi.org/10.1007/s002200050337, Google ScholarCrossref
- 20. S. Carpi, Ann. Henri Poincare 4, 601 (2003) https://doi.org/10.1007/s00023-003-0140-x; Google ScholarCrossref
S. Carpi, Commun. Math. Phys. 244, 261 (2004) https://doi.org/10.1007/s00220-003-0988-0; , Google ScholarCrossref
R. Longo and F. Xu, Commun. Math. Phys. 251, 321 (2004). https://doi.org/10.1007/s00220-004-1063-1, , Google ScholarCrossref - 21. K. Fredenhagen, Commun. Math. Phys. 79, 141 (1981). https://doi.org/10.1007/BF01208291, Google ScholarCrossref
- 22. D. Buchholz and H. Epstein, Fizika (Zagreb) 17, 329 (1985). Google Scholar
- 23. D. Guido and R. Longo, Commun. Math. Phys. 172, 517 (1995) https://doi.org/10.1007/BF02101806; Google ScholarCrossref
D. Guido and R. Longo, Commun. Math. Phys.181, 11 (1996). https://doi.org/10.1007/BF02101672, , Google ScholarCrossref - 24. D. Guido, R. Longo, J. E. Roberts, and R. Verch, Rev. Math. Phys. 13, 125 (2001). https://doi.org/10.1142/S0129055X01000557, Google ScholarCrossref
- 25. J. Mund, Commun. Math. Phys. 286, 1159 (2009). https://doi.org/10.1007/s00220-008-0628-9, Google ScholarCrossref
- 26. S. Doplicher and J. E. Roberts, Commun. Math. Phys. 131, 51 (1990). https://doi.org/10.1007/BF02097680, Google ScholarCrossref
- 27. S. Doplicher and G. Piacitelli, Rev. Math. Phys. 14, 873 (2002). https://doi.org/10.1142/S0129055X02001430, Google ScholarCrossref
- 28. S. Doplicher and R. Longo, Invent. Math. 75, 493 (1984). https://doi.org/10.1007/BF01388641, Google ScholarCrossref
- 29. D. Buchholz and E. Wichmann, Commun. Math. Phys. 106, 321 (1986). https://doi.org/10.1007/BF01454978, Google ScholarCrossref
- 30. S. Doplicher, Commun. Math. Phys. 85, 73 (1982). https://doi.org/10.1007/BF02029134, Google ScholarCrossref
- 31. S. Doplicher and R. Longo, Commun. Math. Phys. 88, 399 (1983). https://doi.org/10.1007/BF01213216, Google ScholarCrossref
- 32. D. Buchholz, S. Doplicher, and R. Longo, Ann. Phys. 170, 1 (1986). https://doi.org/10.1016/0003-4916(86)90086-2, Google ScholarCrossref
- 33. S. Carpi and R. Conti, Commun. Math. Phys. 253, 423 (2005) https://doi.org/10.1007/s00220-004-1135-2; Google ScholarCrossref
e-print arXiv:math/0312033v1 [math.OA]. , Google Scholar - 34. G. Morsella and L. Tomassini, “From global symmetries to local currents:the free (scalar) case in 4 dimensions,” Rev. Math. Phys. (to be published). Google Scholar
- 35. D. Buchholz, C. D’Antoni, and R. Longo, J. Funct. Anal. 88, 233 (1990) https://doi.org/10.1016/0022-1236(90)90104-S; Google ScholarCrossref
D. Buchholz, C. D’Antoni, and R. Longo, Commun. Math. Phys. 129, 115 (1990). https://doi.org/10.1007/BF02096782, , Google ScholarCrossref - 36. D. Buchholz and R. Verch, Rev. Math. Phys. 7, 1195 (1995). https://doi.org/10.1142/S0129055X9500044X, Google ScholarCrossref
- 37. C. D’Antoni, G. Morsella, and R. Verch, Ann. Henri Poincare 5, 809 (2004). https://doi.org/10.1007/s00023-004-0183-7, Google ScholarCrossref
- 38. H. Bostelmann, C. D’Antoni, and G. Morsella, Commun. Math. Phys. 285, 763 (2009). https://doi.org/10.1007/s00220-008-0613-3, Google ScholarCrossref
- 39. R. Conti and G. Morsella, Ann. Henri Poincare 10, 485 (2009). https://doi.org/10.1007/s00023-009-0418-8, Google ScholarCrossref
- 40. R. Brunetti and K. Fredenhagen, e-print arXiv:0901.2063. Google Scholar
- 41. R. Brunetti, M. Duetsch, and K. Fredenhagen, e-print arXiv:0901.2038. Google Scholar
- 42. R. Longo, Commun. Math. Phys. 159, 133 (1994). https://doi.org/10.1007/BF02100488, Google ScholarCrossref
- 43. S. Doplicher, C. Pinzari, and J. E. Roberts, Int. J. Math. 12, 415 (2001) https://doi.org/10.1142/S0129167X01000770; Google ScholarCrossref
e-print arXiv:math/0001096v3 [math.OA]. , Google Scholar - 44. M. Mueger, e-print arXiv:0909.2537. Google Scholar
- 45. R. Longo, http://www.mat.uniroma2.it/~longo. Google Scholar
- 46. S. Carpi, R. Hillier, Y. Kawahigashi, and R. Longo, “Spectral triples andthe super-Virasoro algebra,” Commun. Math. Phys. (to be published). Google Scholar
- 47. R. Longo, Commun. Math. Phys. 222, 45 (2001) https://doi.org/10.1007/s002200100492; Google ScholarCrossref
e-print arXiv:math/0003082v2 [math.OA]. , Google Scholar - 48. D. Buchholz, S. Doplicher, G. Morchio, J. E. Roberts, and F. Strocchi, Operator Algebras and Quantum Field Theory (International Press, Boston, 1997), pp. 647–660. Google Scholar
- 49. D. Buchholz, S. Doplicher, G. Morchio, J. E. Roberts, and F. Strocchi, Ann. Phys. 290, 53 (2001). https://doi.org/10.1006/aphy.2001.6136, Google ScholarCrossref
- 50. D. Buchholz, S. Doplicher, G. Morchio, J. E. Roberts, and F. Strocchi, Prog. Math. 251, 49 (2007). https://doi.org/10.1007/978-3-7643-7434-1_5, Google ScholarCrossref
- 51. J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, 1955). Google Scholar
- 52. S. Doplicher, e-print arXiv:0908.0480. Google Scholar
- 53. A. Daneri, G. M. Loinger, and A. Prosperi, Nucl. Phys. 33, 297 (1962). https://doi.org/10.1016/0029-5582(62)90528-X, Google ScholarCrossref
- 54. K. Hepp, Helv. Phys. Acta 45, 237 (1972). Google Scholar
- 55. W. H. Zurek, Phys. Rev. Lett. 90, 120404 (2003). https://doi.org/10.1103/PhysRevLett.90.120404, Google ScholarCrossref
- 56. G. Sewell, Rep. Math. Phys. 56, 271 (2005). https://doi.org/10.1016/S0034-4877(05)80074-6, Google ScholarCrossref
- 57. M. Castagnino, S. Fortin, R. Laura, and O. Lombardi, e-print arXiv:0907.1337. Google Scholar
- 58. G. C. Ghirardi, e-print arXiv:0904.0958. Google Scholar
- 59. A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935). https://doi.org/10.1103/PhysRev.47.777, Google ScholarCrossref
- 60. K. E. Hellwig and K. Kraus, Phys. Rev. D 1, 566 (1970). https://doi.org/10.1103/PhysRevD.1.566, Google ScholarCrossref
- 61. A. Peres, Phys. Rev. A 61, 022117 (2000). https://doi.org/10.1103/PhysRevA.61.022117, Google ScholarCrossref
- 62. R. B. Griffiths, e-print arXiv:0908.2914. Google Scholar
- 63. A. Aspect, in Quantum (Un)speakables—From Bell to Quantum Information, edited by R. A. Bertlmann and A. Zeilinger (Springer, New York, 2002). Google Scholar
- 64. S. Doplicher, K. Fredenhagen, and J. E. Roberts, Phys. Lett. B 331, 39 (1994). https://doi.org/10.1016/0370-2693(94)90940-7, Google ScholarCrossref
- 65. S. Doplicher, K. Fredenhagen, and J. E. Roberts, Commun. Math. Phys. 172, 187 (1995). https://doi.org/10.1007/BF02104515, Google ScholarCrossref
- 66. S. Doplicher, K. Fredenhagen (unpublished). Google Scholar
- 67. D. Bahns, S. Doplicher, K. Fredenhagen, and G. Piacitelli, Commun. Math. Phys. 237, 221 (2003). Google ScholarCrossref
- 68. G. Piacitelli, e-print arXiv:0902.0575v1 [hep-th]. Google Scholar
- 69. J. Zahn, Phys. Rev. D 73, 105005 (2006) https://doi.org/10.1103/PhysRevD.73.105005; Google ScholarCrossref
arXiv:hep-th/0603231v2. , Google Scholar - 70. H. Grosse and G. Lechner, J. High Energy Phys. 0809, 131 (2008). https://doi.org/10.1088/1126-6708/2008/09/131, Google ScholarCrossref
- 71. D. Buchholz and S. J. Summers, e-print arXiv:0806.0349. Google Scholar
- 72. D. Bahns, S. Doplicher, K. Fredenhagen, and G. Piacitelli, Phys. Lett. B 533, 178 (2002). https://doi.org/10.1016/S0370-2693(02)01563-0, Google ScholarCrossref
- 73. G. Piacitelli, J. High Energy Phys. 0408, 031 (2004) https://doi.org/10.1088/1126-6708/2004/08/031; Google ScholarCrossref
e-print: arXiv:hep-th/0403055v4. , Google Scholar - 74. D. Bahns, J. Math. Phys. 45, 4640 (2004). https://doi.org/10.1063/1.1776644, Google ScholarScitation
- 75. M. Kossow, Phys. Rev. D 77, 065018 (2008) https://doi.org/10.1103/PhysRevD.77.065018; Google ScholarCrossref
e-print arXiv:hep-th/0612111. , Google Scholar - 76. J. Zahn, Ph.D. thesis, DESY-THESIS-2006-037, 2006; Google Scholar
e-print arXiv:0707.2149. Google Scholar - 77. C. Döscher and J. Zahn, Phys. Rev. D 73, 045024 (2006) https://doi.org/10.1103/PhysRevD.73.045024; Google ScholarCrossref
e-print arXiv:hep-th/0512028. , Google Scholar - 78. C. Döscher and J. Zahn, Ann. Henri Poincare 10, 35 (2009) https://doi.org/10.1007/s00023-009-0401-4; Google ScholarCrossref
e-print arXiv:hep-th/0605062. , Google Scholar - 79. S. Doplicher, e-print arXiv:hep-th/0105251. Google Scholar
- 80. S. Doplicher, J. Phys.: Conf. Ser. 53, 793 (2006) https://doi.org/10.1088/1742-6596/53/1/051; Google ScholarCrossref
e-print arXiv:hep-th/0608124. , Google Scholar - 81. D. Bahns, e-print arXiv:0908.4537. Google Scholar
- © 2010 American Institute of Physics.
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.

