No Access Submitted: 16 March 2009 Accepted: 03 May 2009 Published Online: 10 June 2009
Journal of Applied Physics 105, 114107 (2009); https://doi.org/10.1063/1.3142429
more...View Affiliations
View Contributors
  • Shujun Zhang
  • Yanqing Zheng
  • Haikuan Kong
  • Jun Xin
  • Eric Frantz
  • Thomas R. Shrout
Piezoelectric single crystals with the ordered langasite structure A3BC3D2O14, including Sr3TaGa3Si2O14, Sr3NbGa3Si2O14, Ca3TaGa3Si2O14, and Ca3TaAl3Si2O14 (CTAS), were studied as a function of temperature, up to 900°C. The dielectric permittivity ε11 and piezoelectric coefficient d11 of the ordered crystals were found to be on the orders of 12–16 and 4–5 pC/N, respectively, slightly lower than langasite (La3Ga5SiO14-LGS) or langanite (La3Ga5.5Nb0.5O14) crystals which possess a disordered structure. The mechanical quality factor Q and electrical resistivity ρ, however, were found to be greatly improved at elevated temperatures 500°C, being one to two orders of magnitude higher, due to cation ordering. Of particular interest is the CTAS crystal, in which, the Ga cations are totally replaced by low cost Al cations. Together with its thermally stable piezoelectric properties and high electrical resistivity, CTAS crystals offer a competitive material for high temperature sensing applications.
The research was partly supported by the National Natural Sciences Foundation of China (Grant Nos. 50772121 and 50802104) and the Knowledge Innovation Program of Chinese Academy of Sciences (Grant No. KGCX-2-YW-206).
  1. 1. G. W. Hunter, J. D. Wrbanek, R. S. Okojie, P. G. Neudeck, G. C. Fralick, L. Chen, J. Xu, and G. M. Beheim, Proc. SPIE 6222, 622209 (2006). https://doi.org/10.1117/12.668458, Google ScholarCrossref
  2. 2. A. A. Ned, R. S. Okojie, and A. D. Kurtz, Fourth International High Temperature Electronics Conference, HITEC, 1998, Vol. 14–18, pp. 257–260. https://doi.org/10.1109/HITEC.1998.676799, Google ScholarCrossref
  3. 3. D. Damjanovic, Curr. Opin. Solid State Mater. Sci. 3, 469 (1998). https://doi.org/10.1016/S1359-0286(98)80009-0, Google ScholarCrossref
  4. 4. S. J. Zhang, Y. T. Fei, B. H. T. Chai, E. Frantz, D. W. Snyder, X. N. Jiang, and T. R. Shrout, Appl. Phys. Lett. 92, 202905 (2008). https://doi.org/10.1063/1.2936276, Google ScholarScitation, ISI
  5. 5. S. J. Zhang, E. Frantz, R. Xia, W. Everson, J. Randi, D. W. Snyder, and T. R. Shrout, J. Appl. Phys. 104, 084103 (2008). https://doi.org/10.1063/1.3000560, Google ScholarScitation, ISI
  6. 6. S. J. Zhang, Y. T. Fei, E. Frantz, D. W. Snyder, B. H. T. Chai, and T. R. Shrout, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 2703 (2008). https://doi.org/10.1109/TUFFC.2008.985, Google ScholarCrossref
  7. 7. H. Fritze and H. L. Tuller, Appl. Phys. Lett. 78, 976 (2001). https://doi.org/10.1063/1.1345797, Google ScholarScitation, ISI
  8. 8. H. Ogi, N. Nakamura, K. Sato, M. Hirao, and S. Uda, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 553 (2003). https://doi.org/10.1109/TUFFC.2003.1201468, Google ScholarCrossref, ISI
  9. 9. H. Seh, H. L. Tuller, and H. Fritz, Sens. Actuators B 93, 169 (2003). https://doi.org/10.1016/S0925-4005(03)00189-8, Google ScholarCrossref
  10. 10. E. Ansorge, S. Schimpf, S. Hirsch, J. Sauerwald, H. Fritze, and B. Schmidt, Sens. Actuators, A 130–131, 393 (2006). https://doi.org/10.1016/j.sna.2005.12.015, Google ScholarCrossref
  11. 11. S. J. Zhang, A. Yoshikawa, K. Kamada, E. Frantz, R. Xia, D. W. Snyder, T. Fukuda, and T. R. Shrout, Solid State Commun. 148, 213 (2008). https://doi.org/10.1016/j.ssc.2008.08.013, Google ScholarCrossref
  12. 12. T. Taishi, T. Hayashi, N. Bamba, Y. Ohno, I. Yonenaga, and K. Hoshikawa, Physica B 401–402, 437 (2007). https://doi.org/10.1016/j.physb.2007.08.206, Google ScholarCrossref
  13. 13. H. Seh and H. L. Tuller, J. Electroceram. 16, 115 (2006). https://doi.org/10.1007/s10832-006-4081-x, Google ScholarCrossref
  14. 14. H. Kimura, S. Uda, O. Buzanov, X. Huang, and S. Koh, J. Electroceram. 20, 73 (2008). https://doi.org/10.1007/s10832-007-9349-2, Google ScholarCrossref
  15. 15. H. Takeda, S. Tanaka, H. Shimizu, T. Nishida, and T. Shiosaki, Key Eng. Mater. 320, 239 (2006). https://doi.org/10.4028/www.scientific.net/KEM.320.239, Google ScholarCrossref
  16. 16. H. B. Chen, “Characterization of growth defects in piezoelectric single crystals by synchrotron white beam x-ray topography,” Ph.D. dissertation, Stony Brook University, 2005. Google Scholar
  17. 17. B. V. Mill’, E. L. Belokoneva, and T. Fukuda, Russ. J. Inorg. Chem. 43, 1270 (1998). Google Scholar
  18. 18. M. M. C. Chou, S. Jen, and B. H. T. Chai, IEEE International Frequency Control Symposium, 2001 (unpublished), p. 250. Google Scholar
  19. 19. H. Takeda, J. Sato, T. Kato, K. Kawasaki, H. Morikoshi, K. Shimamura, and T. Fukuda, Mater. Res. Bull. 35, 245 (2000). https://doi.org/10.1016/S0025-5408(00)00201-4, Google ScholarCrossref
  20. 20. X. Z. Shi, D. R. Yuan, X. Yin, A. J. Wei, S. Y. Guo, and F. P. Yu, Solid State Commun. 142, 173 (2007). https://doi.org/10.1016/j.ssc.2007.01.047, Google ScholarCrossref
  21. 21. T. Karaki, R. Sato, M. Adachi, J. Kushibiki, and M. Arakawa, Jpn. J. Appl. Phys., Part 1 43, 6721 (2004). https://doi.org/10.1143/JJAP.43.6721, Google ScholarCrossref
  22. 22. E. Chilla, R. Kunze, M. Weihnacht, J. Bohm, R. B. Heimann, M. Hengst, and U. Straube, IEEE Ultrasonic Symposium, 2003 (unpublished), p. 92. Google Scholar
  23. 23. B. H. T. Chai, A. N. P. Bustamante, and M. Chou, IEEE International Frequency Control Symposium, 2000 (unpublished), p. 163. Google Scholar
  24. 24. Z. Wang, X. Cheng, D. Yuan, L. Pan, S. Guo, D. Xu, and M. Lv, J. Cryst. Growth 249, 240 (2003). https://doi.org/10.1016/S0022-0248(02)02112-7, Google ScholarCrossref
  25. 25. J. Xin, Y. Q. Zheng, H. K. Kong, and E. W. Shi, Appl. Phys. Lett. 93, 252901 (2008). https://doi.org/10.1063/1.3025545, Google ScholarScitation
  26. 26. J. Xin, Y. Q. Zheng, H. K. Kong, H. Chen, X. N. Tu, and E. W. Shi, Cryst. Growth Des. 8, 2617 (2008). https://doi.org/10.1021/cg800354q, Google ScholarCrossref
  27. 27. IEEE Standard on Piezoelectricity, ANSI/IEEEE Standard 176–1987, NY. Google Scholar
  28. 28. R. D. Shannon, J. Appl. Phys. 73, 348 (1993). https://doi.org/10.1063/1.353856, Google ScholarScitation, ISI
  29. 29. H. Takeda, M. Kumatoriya, and T. Shiosake, Appl. Phys. Lett. 79, 4201 (2001). https://doi.org/10.1063/1.1426274, Google ScholarScitation
  30. 30. K. Shimamura, T. Kato, J. Sato and T. Fukuda, 13th US-Japan Seminar on Dielectric and Piezoelectric Ceramics, Japan, 4–7 November 2007 (unpublished), p. 111. Google Scholar
  31. 31. R. D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32, 751 (1976). https://doi.org/10.1107/S0567739476001551, Google ScholarCrossref
  32. 32. A. G. Cockbain and P. J. Harrop, Brit. J. Appl. Phys. 1, 1109 (1968). https://doi.org/10.1088/0022-3727/1/9/302, Google ScholarCrossref
  33. 33. D. K. Kwon, “Ultra-low temperature processing of barium tellurate dielectrics,” Ph.D. dissertation, Pennsylvania State University, 2006. Google Scholar
  34. 34. P. J. Harrop, J. Mater. Sci. 4, 370 (1969). https://doi.org/10.1007/BF00550407, Google ScholarCrossref, ISI
  1. © 2009 American Institute of Physics.