No Access Submitted: 24 February 2009 Accepted: 07 April 2009 Published Online: 24 April 2009
Appl. Phys. Lett. 94, 162906 (2009); https://doi.org/10.1063/1.3125431
more...View Affiliations
View Contributors
  • Shujun Zhang
  • Nevin P. Sherlock
  • Richard J. Meyer Jr.
  • Thomas R. Shrout
Domain engineered 001 oriented relaxor-PbTiO3 ferroelectric crystals exhibit high electromechanical properties and low mechanical Q values, analogous to “soft” piezoelectric ceramics. However, their characteristic low dielectric loss (0.5%) and strain-electric field hysteresis are reflective of “hard” piezoelectric materials. In this work, the electromechanical behavior of relaxor-PT crystals was investigated as a function of crystallographic orientations. It was found that the electrical and mechanical losses in crystals depends on the specific engineered domain configuration, with high Q observed for the 110 orientation. The high Q, together with high electromechanical coupling (0.9) for 110 oriented relaxor-PT crystals, make them promising candidates for resonant based high power transducer applications.
This work was supported by the ONR and NIH under Contract No. P41-RR11795. The authors thank to Dr. Jun Luo from TRS Technologies Inc., for offering the relaxor-PT single crystals. The authors also thank Ms. Ru Xia for the sample preparation.
  1. 1. S. E. Park and T. R. Shrout, J. Appl. Phys. 82, 1804 (1997). https://doi.org/10.1063/1.365983, Google ScholarScitation, ISI
  2. 2. S. J. Zhang, L. Lebrun, D. Y. Jeong, C. A. Randall, Q. M. Zhang, and T. R. Shrout, J. Appl. Phys. 93, 9257 (2003). https://doi.org/10.1063/1.1571966, Google ScholarScitation, ISI
  3. 3. S. J. Zhang, L. Lebrun, S. F. Liu, S. Rhee, C. A. Randall, and T. R. Shrout, Jpn. J. Appl. Phys., Part 2 41, L1099 (2002). https://doi.org/10.1143/JJAP.41.L1099, Google ScholarCrossref
  4. 4. R. Zhang, B. Jiang, and W. W. Cao, Appl. Phys. Lett. 82, 787 (2003). https://doi.org/10.1063/1.1541937, Google ScholarScitation, ISI
  5. 5. S. J. Zhang, J. Luo, R. Xia, P. W. Rehrig, C. A. Randall, and T. R. Shrout, Solid State Commun. 137, 16 (2006). https://doi.org/10.1016/j.ssc.2005.10.023, Google ScholarCrossref
  6. 6. J. Peng, H. S. Luo, D. Lin, H. Q. Xu, T. H. He, and W. Q. Jin, Appl. Phys. Lett. 85, 6221 (2004). https://doi.org/10.1063/1.1839288, Google ScholarScitation, ISI
  7. 7. L. Lebrun, G. Sebald, B. Guiffard, C. Richard, D. Guyomar, and E. Pleska, Ultrasonics 42, 501 (2004). https://doi.org/10.1016/j.ultras.2004.01.028, Google ScholarCrossref
  8. 8. S. J. Zhang, R. Xia, L. Lebrun, D. Anderson, and T. R. Shrout, Mater. Lett. 59, 3471 (2005). https://doi.org/10.1016/j.matlet.2005.06.016, Google ScholarCrossref
  9. 9. K. Carl and K. H. Hardtl, Ferroelectrics 17, 473 (1978). Google ScholarCrossref, ISI
  10. 10. K. Uchino, J. H. Zheng, Y. H. Chen, X. H. Du, J. Ryu, Y. Gao, S. Ural, S. Priya, and S. Hirose, J. Mater. Sci. 41, 217 (2006). https://doi.org/10.1007/s10853-005-7201-0, Google ScholarCrossref
  11. 11. IEEE, IEEE Standards on Piezoelectricity (IEEE, New York, 1987). Google Scholar
  12. 12. S. J. Zhang, C. A. Randall, and T. R. Shrout, J. Appl. Phys. 95, 4291 (2004). https://doi.org/10.1063/1.1682694, Google ScholarScitation, ISI
  13. 13. S. J. Zhang, S. M. Lee, D. H. Kim, H. Y. Lee, and T. R. Shrout, Appl. Phys. Lett. 93, 122908 (2008). https://doi.org/10.1063/1.2992081, Google ScholarScitation, ISI
  14. 14. M. Davis, D. Damjanovic, D. Hayem, and N. Setter, J. Appl. Phys. 98, 014102 (2005). https://doi.org/10.1063/1.1929091, Google ScholarScitation, ISI
  15. 15. A. J. Bell, J. Appl. Phys. 89, 3907 (2001). https://doi.org/10.1063/1.1352682, Google ScholarScitation, ISI
  16. 16. D. Damjanovic, M. Budimir, M. Davis, and N. Setter, J. Mater. Sci. 41, 65 (2006). https://doi.org/10.1007/s10853-005-5925-5, Google ScholarCrossref
  17. 17. Q. Wan, C. Chen, and Y. P. Shen, J. Mater. Sci. 41, 2993 (2006). https://doi.org/10.1007/s10853-006-6766-6, Google ScholarCrossref
  18. 18. D. Damjanovic, Rep. Prog. Phys. 61, 1267 (1998). https://doi.org/10.1088/0034-4885/61/9/002, Google ScholarCrossref, ISI
  19. 19. D. Damjanovic, M. Budimir, M. Davis, and N. Setter, Appl. Phys. Lett. 83, 527 (2003). https://doi.org/10.1063/1.1592880, Google ScholarScitation, ISI
  20. 20. M. Davis, “Phase transitions, Anisotropy and Domain Engineering: The Piezoelectric Properties of Relaxor-ferroelectric Single Crystals,” Ph.D. thesis, Ceramics Laboratory, Swiss Federal Institute of Technology, 2006. Google Scholar
  21. 21. A. A. Bokov and Z. G. Ye, J. Appl. Phys. 95, 6347 (2004). https://doi.org/10.1063/1.1703830, Google ScholarScitation, ISI
  22. 22. J. P. Han and W. W. Cao, Appl. Phys. Lett. 83, 2040 (2003). https://doi.org/10.1063/1.1605796, Google ScholarScitation
  23. 23. J. Erhart, Phase Transitions 77, 989 (2004). https://doi.org/10.1080/01411590410001710744, Google ScholarCrossref
  24. 24. M. Abplanalp, B. Barosova, P. Bridenbauth, J. Erhart, and J. Fousek, J. Appl. Phys. 91, 3797 (2002). https://doi.org/10.1063/1.1446655, Google ScholarScitation, ISI
  1. © 2009 American Institute of Physics.