ABSTRACT
Domain engineered oriented relaxor- ferroelectric crystals exhibit high electromechanical properties and low mechanical values, analogous to “soft” piezoelectric ceramics. However, their characteristic low dielectric loss and strain-electric field hysteresis are reflective of “hard” piezoelectric materials. In this work, the electromechanical behavior of relaxor-PT crystals was investigated as a function of crystallographic orientations. It was found that the electrical and mechanical losses in crystals depends on the specific engineered domain configuration, with high observed for the orientation. The high , together with high electromechanical coupling for oriented relaxor-PT crystals, make them promising candidates for resonant based high power transducer applications.
This work was supported by the ONR and NIH under Contract No. P41-RR11795. The authors thank to Dr. Jun Luo from TRS Technologies Inc., for offering the relaxor-PT single crystals. The authors also thank Ms. Ru Xia for the sample preparation.
- 1. S. E. Park and T. R. Shrout, J. Appl. Phys. 82, 1804 (1997). https://doi.org/10.1063/1.365983, Google ScholarScitation, ISI
- 2. S. J. Zhang, L. Lebrun, D. Y. Jeong, C. A. Randall, Q. M. Zhang, and T. R. Shrout, J. Appl. Phys. 93, 9257 (2003). https://doi.org/10.1063/1.1571966, Google ScholarScitation, ISI
- 3. S. J. Zhang, L. Lebrun, S. F. Liu, S. Rhee, C. A. Randall, and T. R. Shrout, Jpn. J. Appl. Phys., Part 2 41, L1099 (2002). https://doi.org/10.1143/JJAP.41.L1099, Google ScholarCrossref
- 4. R. Zhang, B. Jiang, and W. W. Cao, Appl. Phys. Lett. 82, 787 (2003). https://doi.org/10.1063/1.1541937, Google ScholarScitation, ISI
- 5. S. J. Zhang, J. Luo, R. Xia, P. W. Rehrig, C. A. Randall, and T. R. Shrout, Solid State Commun. 137, 16 (2006). https://doi.org/10.1016/j.ssc.2005.10.023, Google ScholarCrossref
- 6. J. Peng, H. S. Luo, D. Lin, H. Q. Xu, T. H. He, and W. Q. Jin, Appl. Phys. Lett. 85, 6221 (2004). https://doi.org/10.1063/1.1839288, Google ScholarScitation, ISI
- 7. L. Lebrun, G. Sebald, B. Guiffard, C. Richard, D. Guyomar, and E. Pleska, Ultrasonics 42, 501 (2004). https://doi.org/10.1016/j.ultras.2004.01.028, Google ScholarCrossref
- 8. S. J. Zhang, R. Xia, L. Lebrun, D. Anderson, and T. R. Shrout, Mater. Lett. 59, 3471 (2005). https://doi.org/10.1016/j.matlet.2005.06.016, Google ScholarCrossref
- 9. K. Carl and K. H. Hardtl, Ferroelectrics 17, 473 (1978). Google ScholarCrossref, ISI
- 10. K. Uchino, J. H. Zheng, Y. H. Chen, X. H. Du, J. Ryu, Y. Gao, S. Ural, S. Priya, and S. Hirose, J. Mater. Sci. 41, 217 (2006). https://doi.org/10.1007/s10853-005-7201-0, Google ScholarCrossref
- 11. IEEE, IEEE Standards on Piezoelectricity (IEEE, New York, 1987). Google Scholar
- 12. S. J. Zhang, C. A. Randall, and T. R. Shrout, J. Appl. Phys. 95, 4291 (2004). https://doi.org/10.1063/1.1682694, Google ScholarScitation, ISI
- 13. S. J. Zhang, S. M. Lee, D. H. Kim, H. Y. Lee, and T. R. Shrout, Appl. Phys. Lett. 93, 122908 (2008). https://doi.org/10.1063/1.2992081, Google ScholarScitation, ISI
- 14. M. Davis, D. Damjanovic, D. Hayem, and N. Setter, J. Appl. Phys. 98, 014102 (2005). https://doi.org/10.1063/1.1929091, Google ScholarScitation, ISI
- 15. A. J. Bell, J. Appl. Phys. 89, 3907 (2001). https://doi.org/10.1063/1.1352682, Google ScholarScitation, ISI
- 16. D. Damjanovic, M. Budimir, M. Davis, and N. Setter, J. Mater. Sci. 41, 65 (2006). https://doi.org/10.1007/s10853-005-5925-5, Google ScholarCrossref
- 17. Q. Wan, C. Chen, and Y. P. Shen, J. Mater. Sci. 41, 2993 (2006). https://doi.org/10.1007/s10853-006-6766-6, Google ScholarCrossref
- 18. D. Damjanovic, Rep. Prog. Phys. 61, 1267 (1998). https://doi.org/10.1088/0034-4885/61/9/002, Google ScholarCrossref, ISI
- 19. D. Damjanovic, M. Budimir, M. Davis, and N. Setter, Appl. Phys. Lett. 83, 527 (2003). https://doi.org/10.1063/1.1592880, Google ScholarScitation, ISI
- 20. M. Davis, “Phase transitions, Anisotropy and Domain Engineering: The Piezoelectric Properties of Relaxor-ferroelectric Single Crystals,” Ph.D. thesis, Ceramics Laboratory, Swiss Federal Institute of Technology, 2006. Google Scholar
- 21. A. A. Bokov and Z. G. Ye, J. Appl. Phys. 95, 6347 (2004). https://doi.org/10.1063/1.1703830, Google ScholarScitation, ISI
- 22. J. P. Han and W. W. Cao, Appl. Phys. Lett. 83, 2040 (2003). https://doi.org/10.1063/1.1605796, Google ScholarScitation
- 23. J. Erhart, Phase Transitions 77, 989 (2004). https://doi.org/10.1080/01411590410001710744, Google ScholarCrossref
- 24. M. Abplanalp, B. Barosova, P. Bridenbauth, J. Erhart, and J. Fousek, J. Appl. Phys. 91, 3797 (2002). https://doi.org/10.1063/1.1446655, Google ScholarScitation, ISI
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.