No Access Submitted: 25 July 2008 Accepted: 04 December 2008 Published Online: 29 January 2009
Journal of Applied Physics 105, 023522 (2009); https://doi.org/10.1063/1.3067755
more...View Affiliations
View Contributors
  • D. Logvinovich
  • J. Hejtmánek
  • K. Knižek
  • M. Maryško
  • N. Homazava
  • P. Tomeš
  • R. Aguiar
  • S. G. Ebbinghaus
  • A. Reller
  • A. Weidenkaff
Physical properties of perovskite-type SrMoO2N phases were studied in the temperature range of 3K<T<300K. The oxynitride crystallizes in a cubic unit cell (space group Pm3¯m) as revealed by neutron and x-ray diffraction measurements. The polycrystalline material shows weakly temperature dependent electrical resistivity and low glasslike heat conductivity, both reflecting the unusual strength of the scattering processes in the charge carrier transport. Based on the positive Seebeck coefficient values, holes are identified as the dominating charge carriers in SrMoO2N. Down to 150 K, the magnetic susceptibility is temperature independent and explained as enhanced Pauli paramagnetism (χ104emumol1Oe1). The absolute value of its magnetic susceptibility is, however, half of that for SrMoO3. Simultaneously, the lower Sommerfeld coefficient γ measured for the oxynitride confirms the lower density of states near the Fermi level for SrMoO2N compared to SrMoO3. At low temperature, both SrMoO2N and SrMoO3 show Curie paramagnetism superimposed to the temperature independent Pauli paramagnetism and an anomaly at T=54K. This anomaly is attributed to the presence of molecular oxygen in the material, while the Curie upturn is likely associated with a small amount of paramagnetic centers.
The authors acknowledge the German Science Foundation (Grant No. DFG-SPP 1136) for the financial support as well as Dr. Denis Sheptyakov (SINQ) for the technical assistance. This work is partly based on the experiments performed at the Swiss Spallation Neutron Source SINQ, Paul Scherrer Institute, Villingen, Switzerland.
  1. 1. D. Logvinovich, A. Borger, M. Dobeli, S. G. Ebbinghaus, A. Reller, and A. Weidenkaff, Prog. Solid State Chem. https://doi.org/10.1016/j.progsolidstchem.2007.01.006 35, 281 (2007). Google ScholarCrossref
  2. 2. M. Jansen and H. P. Letschert, Nature (London) https://doi.org/10.1038/35010082 404, 980 (2000). Google ScholarCrossref
  3. 3. R. Aguiar, D. Logvinovich, A. Weidenkaff, A. Rachel, A. Reller, and S. G. Ebbinghaus, Dyes Pigm. 76, 70 (2008). Google ScholarCrossref
  4. 4. A. Kasahara, K. Nukumizu, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi, and K. Domen, J. Phys. Chem. B 107, 791 (2003). Google ScholarCrossref
  5. 5. R. Aguiar, Y. Lee, K. Domen, A. Kalytta, D. Logvinovich, A. Weidenkaff, A. Reller, and S. G. Ebbinghaus, Ceramic Materials Research Trends (Nova Science, New York, 2007), pp. 107–133. Google Scholar
  6. 6. P. Antoine, R. Marchand, Y. Laurent, C. Michel, and B. Raveau, Mater. Res. Bull. 23, 953 (1988). Google ScholarCrossref
  7. 7. P. Antoine, R. Assabaa, P. L'Haridon, R. Marchand, Y. Laurent, C. Michel, and B. Raveau, Mater. Sci. Eng., B 5, 43 (1989). Google ScholarCrossref
  8. 8. H. Mizoguchi, K. Fukumi, N. Kitamura, T. Takeuchi, J. Hayakawa, H. Yamanaka, H. Yanagi, H. Hosono, and H. Kawazoe, J. Appl. Phys. https://doi.org/10.1063/1.370288 85, 6502 (1999). Google ScholarScitation
  9. 9. H. Mizoguchi, N. Kitamura, K. Fukumi, T. Mihara, J. Nishii, M. Nakamura, N. Kikuchi, H. Hosono, and H. Kawazoe, J. Appl. Phys. https://doi.org/10.1063/1.373111 87, 4617 (2000). Google ScholarScitation
  10. 10. G. Liu, X. Zhao, and H. A. Eick, J. Alloys Compd. https://doi.org/10.1016/0925-8388(92)90529-I 187, 145 (1992). Google ScholarCrossref
  11. 11. I. D. Fawcett, K. V. Ramanujachary, and M. Greenblatt, Mater. Res. Bull. 32, 1565 (1997). Google ScholarCrossref
  12. 12. I. C. Lekshmi, A. Gayen, and M. S. Hegde, Mater. Res. Bull. https://doi.org/10.1016/j.materresbull.2004.09.004 40, 93 (2005). Google ScholarCrossref
  13. 13. D. Logvinovich, M. H. Aguirre, J. Hejtmanek, R. Aguiar, S. G. Ebbinghaus, A. Reller, and A. Weidenkaff, J. Solid State Chem. 181, 2243 (2008). Google ScholarCrossref
  14. 14. D. Logvinovich, R. Aguiar, R. Robert, M. Trottmann, S. G. Ebbinghaus, A. Reller, and A. Weidenkaff, J. Solid State Chem. 180, 2649 (2007). Google ScholarCrossref
  15. 15. L. H. Brixner, J. Inorg. Nucl. Chem. https://doi.org/10.1016/0022-1902(60)80262-X 14, 225 (1960). Google ScholarCrossref
  16. 16. P. Fischer, G. Frey, M. Koch, M. Konnecke, V. Pomjakushin, J. Schefer, R. Thut, N. Schlumpf, R. Burge, and U. Greuter, Physica B 276–278, 146 (2000). Google ScholarCrossref
  17. 17. J. Rodriguez-Carvajal, Physica B https://doi.org/10.1016/0921-4526(93)90108-I 192, 55 (1993). Google ScholarCrossref, ISI
  18. 18. J. H. Van Vleck, Theory of Electric and Magnetic Susceptibilities (Clarendon, Oxford, 1932). Google Scholar
  19. 19. I. Nagai, N. Shirakawa, S. Ikeda, R. Iwasaki, H. Nishimura, and M. Kosaka, Appl. Phys. Lett. https://doi.org/10.1063/1.1992671 87, 024105 (2005). Google ScholarScitation, ISI
  20. 20. T. Maekawa, K. Kurosaki, H. Muta, M. Uno, and S. Yamanaka, J. Alloys Compd. 390, 314 (2005). Google ScholarCrossref
  21. 21. K. G. Wilson, Rev. Mod. Phys. https://doi.org/10.1103/RevModPhys.47.773 47, 773 (1975). Google ScholarCrossref, ISI
  22. 22. S. I. Ikeda and N. Shirakawa, Physica C 341-348, 785 (2000). Google ScholarCrossref
  23. 23. N. Shirakawa and S. I. Ikeda, Physica C 364-365, 309 (2001). Google ScholarCrossref
  24. 24. F. Beuneu, P. Vajda, and O. J. Zogal, Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.83.761 83, 761 (1999). Google ScholarCrossref
  25. 25. I. H. Inoue, O. Goto, H. Makino, N. E. Hussey, and M. Ishikawa, Phys. Rev. B https://doi.org/10.1103/PhysRevB.58.4372 58, 4372 (1998). Google ScholarCrossref
  1. © 2009 American Institute of Physics.