ABSTRACT
Physical properties of perovskite-type phases were studied in the temperature range of . The oxynitride crystallizes in a cubic unit cell (space group ) as revealed by neutron and x-ray diffraction measurements. The polycrystalline material shows weakly temperature dependent electrical resistivity and low glasslike heat conductivity, both reflecting the unusual strength of the scattering processes in the charge carrier transport. Based on the positive Seebeck coefficient values, holes are identified as the dominating charge carriers in . Down to 150 K, the magnetic susceptibility is temperature independent and explained as enhanced Pauli paramagnetism . The absolute value of its magnetic susceptibility is, however, half of that for . Simultaneously, the lower Sommerfeld coefficient measured for the oxynitride confirms the lower density of states near the Fermi level for compared to . At low temperature, both and show Curie paramagnetism superimposed to the temperature independent Pauli paramagnetism and an anomaly at . This anomaly is attributed to the presence of molecular oxygen in the material, while the Curie upturn is likely associated with a small amount of paramagnetic centers.
ACKNOWLEDGMENTS
The authors acknowledge the German Science Foundation (Grant No. DFG-SPP 1136) for the financial support as well as Dr. Denis Sheptyakov (SINQ) for the technical assistance. This work is partly based on the experiments performed at the Swiss Spallation Neutron Source SINQ, Paul Scherrer Institute, Villingen, Switzerland.
- 1. D. Logvinovich, A. Borger, M. Dobeli, S. G. Ebbinghaus, A. Reller, and A. Weidenkaff, Prog. Solid State Chem. https://doi.org/10.1016/j.progsolidstchem.2007.01.006 35, 281 (2007). Google ScholarCrossref
- 2. M. Jansen and H. P. Letschert, Nature (London) https://doi.org/10.1038/35010082 404, 980 (2000). Google ScholarCrossref
- 3. R. Aguiar, D. Logvinovich, A. Weidenkaff, A. Rachel, A. Reller, and S. G. Ebbinghaus, Dyes Pigm. 76, 70 (2008). Google ScholarCrossref
- 4. A. Kasahara, K. Nukumizu, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi, and K. Domen, J. Phys. Chem. B 107, 791 (2003). Google ScholarCrossref
- 5. R. Aguiar, Y. Lee, K. Domen, A. Kalytta, D. Logvinovich, A. Weidenkaff, A. Reller, and S. G. Ebbinghaus, Ceramic Materials Research Trends (Nova Science, New York, 2007), pp. 107–133. Google Scholar
- 6. P. Antoine, R. Marchand, Y. Laurent, C. Michel, and B. Raveau, Mater. Res. Bull. 23, 953 (1988). Google ScholarCrossref
- 7. P. Antoine, R. Assabaa, P. L'Haridon, R. Marchand, Y. Laurent, C. Michel, and B. Raveau, Mater. Sci. Eng., B 5, 43 (1989). Google ScholarCrossref
- 8. H. Mizoguchi, K. Fukumi, N. Kitamura, T. Takeuchi, J. Hayakawa, H. Yamanaka, H. Yanagi, H. Hosono, and H. Kawazoe, J. Appl. Phys. https://doi.org/10.1063/1.370288 85, 6502 (1999). Google ScholarScitation
- 9. H. Mizoguchi, N. Kitamura, K. Fukumi, T. Mihara, J. Nishii, M. Nakamura, N. Kikuchi, H. Hosono, and H. Kawazoe, J. Appl. Phys. https://doi.org/10.1063/1.373111 87, 4617 (2000). Google ScholarScitation
- 10. G. Liu, X. Zhao, and H. A. Eick, J. Alloys Compd. https://doi.org/10.1016/0925-8388(92)90529-I 187, 145 (1992). Google ScholarCrossref
- 11. I. D. Fawcett, K. V. Ramanujachary, and M. Greenblatt, Mater. Res. Bull. 32, 1565 (1997). Google ScholarCrossref
- 12. I. C. Lekshmi, A. Gayen, and M. S. Hegde, Mater. Res. Bull. https://doi.org/10.1016/j.materresbull.2004.09.004 40, 93 (2005). Google ScholarCrossref
- 13. D. Logvinovich, M. H. Aguirre, J. Hejtmanek, R. Aguiar, S. G. Ebbinghaus, A. Reller, and A. Weidenkaff, J. Solid State Chem. 181, 2243 (2008). Google ScholarCrossref
- 14. D. Logvinovich, R. Aguiar, R. Robert, M. Trottmann, S. G. Ebbinghaus, A. Reller, and A. Weidenkaff, J. Solid State Chem. 180, 2649 (2007). Google ScholarCrossref
- 15. L. H. Brixner, J. Inorg. Nucl. Chem. https://doi.org/10.1016/0022-1902(60)80262-X 14, 225 (1960). Google ScholarCrossref
- 16. P. Fischer, G. Frey, M. Koch, M. Konnecke, V. Pomjakushin, J. Schefer, R. Thut, N. Schlumpf, R. Burge, and U. Greuter, Physica B 276–278, 146 (2000). Google ScholarCrossref
- 17. J. Rodriguez-Carvajal, Physica B https://doi.org/10.1016/0921-4526(93)90108-I 192, 55 (1993). Google ScholarCrossref, ISI
- 18. J. H. Van Vleck, Theory of Electric and Magnetic Susceptibilities (Clarendon, Oxford, 1932). Google Scholar
- 19. I. Nagai, N. Shirakawa, S. Ikeda, R. Iwasaki, H. Nishimura, and M. Kosaka, Appl. Phys. Lett. https://doi.org/10.1063/1.1992671 87, 024105 (2005). Google ScholarScitation, ISI
- 20. T. Maekawa, K. Kurosaki, H. Muta, M. Uno, and S. Yamanaka, J. Alloys Compd. 390, 314 (2005). Google ScholarCrossref
- 21. K. G. Wilson, Rev. Mod. Phys. https://doi.org/10.1103/RevModPhys.47.773 47, 773 (1975). Google ScholarCrossref, ISI
- 22. S. I. Ikeda and N. Shirakawa, Physica C 341-348, 785 (2000). Google ScholarCrossref
- 23. N. Shirakawa and S. I. Ikeda, Physica C 364-365, 309 (2001). Google ScholarCrossref
- 24. F. Beuneu, P. Vajda, and O. J. Zogal, Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.83.761 83, 761 (1999). Google ScholarCrossref
- 25. I. H. Inoue, O. Goto, H. Makino, N. E. Hussey, and M. Ishikawa, Phys. Rev. B https://doi.org/10.1103/PhysRevB.58.4372 58, 4372 (1998). Google ScholarCrossref
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.