No Access Submitted: 30 July 2008 Accepted: 29 August 2008 Published Online: 23 September 2008
Appl. Phys. Lett. 93, 122506 (2008);
more...View Affiliations
View Contributors
  • Wenhong Wang
  • Hiroaki Sukegawa
  • Rong Shan
  • Koichiro Inomata
Magnetic tunnel junctions (MTJs) using L21-ordered full-Heusler Co2FeAl0.5Si0.5 (CFAS) electrodes and an MgO tunnel barrier were prepared on MgO-buffered MgO (001) substrates by sputtering method. In situ and ex situ structural characterization confirms that the stacking structure of CFAS/MgO/CFAS is fully epitaxial, with smooth interfaces throughout. The microfabricated MTJs exhibited relatively high tunnel magnetoresistance ratios of 150% at room temperature and 312% at 7K. We observed a symmetrical crossover point from the bias voltage dependence of differential conductance between parallel and antiparallel magnetization configurations, and also a flat behavior in the parallel conductance, which can be explained by considering the characteristic half-metallic band structure of L21-ordered CFAS near the Fermi level.
This work was partly supported by the NEDO and CREST.
  1. 1. J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, Phys. Rev. Lett. 74, 3273 (1995). Google ScholarCrossref, ISI
  2. 2. T. Miyazaki and N. Tezuka, J. Magn. Magn. Mater. 139, L231 (1995). Google ScholarCrossref, ISI
  3. 3. M. Jullière, Phys. Lett. 54A, 225 (1975). Google ScholarCrossref, ISI
  4. 4. R. A. Groot, F. M. Mueller, P. G. van Engen, and K. H. J. Buschow, Phys. Rev. Lett. 50, 2024 (1983). Google ScholarCrossref, ISI
  5. 5. M. Bowen, M. Bibes, A. Barthelemy, J. P. Contour, A. Anane, Y. Lemaitre, and A. Fert, Appl. Phys. Lett. 82, 233 (2003). Google ScholarScitation, ISI
  6. 6. S. Ishida, S. Fujii, S. Kashiwagi, and S. Asano, J. Phys. Soc. Jpn. 64, 2152 (1995). Google ScholarCrossref
  7. 7. I. Galanakis, P. H. Dederichs, and N. Papanikolaou, Phys. Rev. B 66, 174429 (2002). Google ScholarCrossref, ISI
  8. 8. S. Picozzi, A. Continenza, and A. J. Freeman, Phys. Rev. B 66, 094421 (2002). Google ScholarCrossref, ISI
  9. 9. K. Inomata, S. Okamura, R. Goto, and N. Tezuka, Jpn. J. Appl. Phys., Part 2 42, L419 (2003). Google ScholarCrossref, ISI
  10. 10. Y. Sakuraba, M. Hattori, M. Oogane, Y. Ando, H. Kato, A. Sakuma, T. Miyazaki, and H. Kubota, Appl. Phys. Lett. 88, 022503 (2006). Google ScholarScitation, ISI
  11. 11. T. Ishikawa, T. Marukame, H. Kijima, K.-I. Matsuda, T. Uemura, M. Arita, and M. Yamamoto, Appl. Phys. Lett. 89, 192505 (2006). Google ScholarScitation, ISI
  12. 12. T. Ishikawa, S. Hakamata, K.-I. Matsuda, T. Uemura, and M. Yamamoto, J. Appl. Phys. 103, 07A919 (2008). Google ScholarScitation, ISI
  13. 13. S. Okamura, A. Miyazaki, S. Sugimoto, N. Tezuka, and K. Inomata, Appl. Phys. Lett. 86, 232503 (2005). Google ScholarScitation, ISI
  14. 14. T. Marukame, T. Ishikawa, S. Hakamata, K. Matsuda, T. Uemura, and M. Yamamoto, Appl. Phys. Lett. 90, 012508 (2007). Google ScholarScitation, ISI
  15. 15. G. H. Fecher and C. Felser, J. Phys. D 40, 1582 (2007). Google ScholarCrossref
  16. 16. Z. Gercsi and K. Hono, J. Phys.: Condens. Matter 19, 326216 (2007). Google ScholarCrossref, ISI
  17. 17. N. Tezuka, N. Ikeda, S. Sugimoto, and K. Inomata, Jpn. J. Appl. Phys. 46, L454 (2007). Google ScholarCrossref
  18. 18. W. H. Wang, H. Sukegawa, R. Shan, T. Furubayashi, and K. Inomata, Appl. Phys. Lett. 92, 221912 (2008). Google ScholarScitation, ISI
  19. 19. D. J. Monsma and S. S. P. Parkin, Appl. Phys. Lett. 77, 720 (2000). Google ScholarScitation, ISI
  20. 20. S. Zhang, P. M. Levy, A. Markey, and S. S. P. Parkin, Phys. Rev. Lett. 79, 3744 (1997). Google ScholarCrossref, ISI
  21. 21. Y. Ando, J. Murai, H. Kubota, and T. Miyazaki, J. Appl. Phys. 87, 5209 (2000). Google ScholarScitation, ISI
  22. 22. J. M. De Teresa, A. Barthélémy, A. Fert, J. P. Contour, R. Lyonnet, F. Montaigne, P. Seneor, and A. Vaurés, Phys. Rev. Lett. 82, 4288 (1999). Google ScholarCrossref, ISI
  1. © 2008 American Institute of Physics.