No Access Submitted: 30 July 2008 Accepted: 29 August 2008 Published Online: 23 September 2008
Appl. Phys. Lett. 93, 122506 (2008); https://doi.org/10.1063/1.2988649
more...View Affiliations
View Contributors
  • Wenhong Wang
  • Hiroaki Sukegawa
  • Rong Shan
  • Koichiro Inomata
Magnetic tunnel junctions (MTJs) using L21-ordered full-Heusler Co2FeAl0.5Si0.5 (CFAS) electrodes and an MgO tunnel barrier were prepared on MgO-buffered MgO (001) substrates by sputtering method. In situ and ex situ structural characterization confirms that the stacking structure of CFAS/MgO/CFAS is fully epitaxial, with smooth interfaces throughout. The microfabricated MTJs exhibited relatively high tunnel magnetoresistance ratios of 150% at room temperature and 312% at 7K. We observed a symmetrical crossover point from the bias voltage dependence of differential conductance between parallel and antiparallel magnetization configurations, and also a flat behavior in the parallel conductance, which can be explained by considering the characteristic half-metallic band structure of L21-ordered CFAS near the Fermi level.
This work was partly supported by the NEDO and CREST.
  1. 1. J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.74.3273 74, 3273 (1995). Google ScholarCrossref, ISI
  2. 2. T. Miyazaki and N. Tezuka, J. Magn. Magn. Mater. https://doi.org/10.1016/0304-8853(95)90001-2 139, L231 (1995). Google ScholarCrossref, ISI
  3. 3. M. Jullière, Phys. Lett. https://doi.org/10.1016/0375-9601(75)90174-7 54A, 225 (1975). Google ScholarCrossref, ISI
  4. 4. R. A. Groot, F. M. Mueller, P. G. van Engen, and K. H. J. Buschow, Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.50.2024 50, 2024 (1983). Google ScholarCrossref, ISI
  5. 5. M. Bowen, M. Bibes, A. Barthelemy, J. P. Contour, A. Anane, Y. Lemaitre, and A. Fert, Appl. Phys. Lett. https://doi.org/10.1063/1.1534619 82, 233 (2003). Google ScholarScitation, ISI
  6. 6. S. Ishida, S. Fujii, S. Kashiwagi, and S. Asano, J. Phys. Soc. Jpn. https://doi.org/10.1143/JPSJ.64.2152 64, 2152 (1995). Google ScholarCrossref
  7. 7. I. Galanakis, P. H. Dederichs, and N. Papanikolaou, Phys. Rev. B https://doi.org/10.1103/PhysRevB.66.174429 66, 174429 (2002). Google ScholarCrossref, ISI
  8. 8. S. Picozzi, A. Continenza, and A. J. Freeman, Phys. Rev. B https://doi.org/10.1103/PhysRevB.66.094421 66, 094421 (2002). Google ScholarCrossref, ISI
  9. 9. K. Inomata, S. Okamura, R. Goto, and N. Tezuka, Jpn. J. Appl. Phys., Part 2 https://doi.org/10.1143/JJAP.42.L419 42, L419 (2003). Google ScholarCrossref, ISI
  10. 10. Y. Sakuraba, M. Hattori, M. Oogane, Y. Ando, H. Kato, A. Sakuma, T. Miyazaki, and H. Kubota, Appl. Phys. Lett. https://doi.org/10.1063/1.2162867 88, 022503 (2006). Google ScholarScitation, ISI
  11. 11. T. Ishikawa, T. Marukame, H. Kijima, K.-I. Matsuda, T. Uemura, M. Arita, and M. Yamamoto, Appl. Phys. Lett. https://doi.org/10.1063/1.2378397 89, 192505 (2006). Google ScholarScitation, ISI
  12. 12. T. Ishikawa, S. Hakamata, K.-I. Matsuda, T. Uemura, and M. Yamamoto, J. Appl. Phys. https://doi.org/10.1063/1.2843756 103, 07A919 (2008). Google ScholarScitation, ISI
  13. 13. S. Okamura, A. Miyazaki, S. Sugimoto, N. Tezuka, and K. Inomata, Appl. Phys. Lett. https://doi.org/10.1063/1.1944893 86, 232503 (2005). Google ScholarScitation, ISI
  14. 14. T. Marukame, T. Ishikawa, S. Hakamata, K. Matsuda, T. Uemura, and M. Yamamoto, Appl. Phys. Lett. https://doi.org/10.1063/1.2428412 90, 012508 (2007). Google ScholarScitation, ISI
  15. 15. G. H. Fecher and C. Felser, J. Phys. D https://doi.org/10.1088/0022-3727/40/6/S12 40, 1582 (2007). Google ScholarCrossref
  16. 16. Z. Gercsi and K. Hono, J. Phys.: Condens. Matter https://doi.org/10.1088/0953-8984/19/32/326216 19, 326216 (2007). Google ScholarCrossref, ISI
  17. 17. N. Tezuka, N. Ikeda, S. Sugimoto, and K. Inomata, Jpn. J. Appl. Phys. https://doi.org/10.1143/JJAP.46.L454 46, L454 (2007). Google ScholarCrossref
  18. 18. W. H. Wang, H. Sukegawa, R. Shan, T. Furubayashi, and K. Inomata, Appl. Phys. Lett. https://doi.org/10.1063/1.2940595 92, 221912 (2008). Google ScholarScitation, ISI
  19. 19. D. J. Monsma and S. S. P. Parkin, Appl. Phys. Lett. https://doi.org/10.1063/1.127097 77, 720 (2000). Google ScholarScitation, ISI
  20. 20. S. Zhang, P. M. Levy, A. Markey, and S. S. P. Parkin, Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.79.3744 79, 3744 (1997). Google ScholarCrossref, ISI
  21. 21. Y. Ando, J. Murai, H. Kubota, and T. Miyazaki, J. Appl. Phys. https://doi.org/10.1063/1.373297 87, 5209 (2000). Google ScholarScitation, ISI
  22. 22. J. M. De Teresa, A. Barthélémy, A. Fert, J. P. Contour, R. Lyonnet, F. Montaigne, P. Seneor, and A. Vaurés, Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.82.4288 82, 4288 (1999). Google ScholarCrossref, ISI
  1. © 2008 American Institute of Physics.