No Access Submitted: 09 July 2008 Accepted: 31 July 2008 Published Online: 16 September 2008
Appl. Phys. Lett. 93, 112504 (2008); https://doi.org/10.1063/1.2975848
more...View Affiliations
View Contributors
  • C. Grünzweig
  • C. David
  • O. Bunk
  • M. Dierolf
  • G. Frei
  • G. Kühne
  • R. Schäfer
  • S. Pofahl
  • H. M. R. Rønnow
  • F. Pfeiffer
We report on how a neutron grating interferometer can yield projection images of the internal domain structure in bulk ferromagnetic samples. The image contrast relies on the ultrasmall angle scattering of unpolarized neutrons at domain wall structures in the specimen. The results show the basic domains of (110)-oriented sheets in an FeSi test sample. The obtained domain structures could be correlated with surface sensitive magneto-optical Kerr effect micrographs.
  1. 1. A. Hubert and R. Schäfer, Magnetic Domains (Springer, Berlin, 1998). Google Scholar
  2. 2. H. Hopster and H. P. Oepen, Magnetic Microscopy of Nanostructures (Springer, Berlin, 2005). Google ScholarCrossref
  3. 3. S. Libovicky, Phys. Status Solidi A https://doi.org/10.1002/pssa.2210120224 12, 539 (1972). Google ScholarCrossref
  4. 4. R. Schäfer and S. Schinnerling, J. Magn. Magn. Mater. 215–216, 140 (2000). Google ScholarCrossref
  5. 5. O. Halpern and T. Holstein, Phys. Rev. 59, 940 (1941). Google Scholar
  6. 6. O. Schärpf and H. Strothmann, Phys. Scr. https://doi.org/10.1088/0031-8949/1988/T24/009 T24, 58 (1988). Google ScholarCrossref
  7. 7. M. Schlenker, W. Bauspiess, W. Gräff, U. Bonse, and H. Rauch, J. Magn. Magn. Mater. 15–18, 1507 (1980). Google ScholarCrossref
  8. 8. S. Nakatani, H. Tomimitsu, T. Takahashi, and S. Kikuta, Jpn. J. Appl. Phys., Part 2 31, L1137 (1992). Google ScholarCrossref
  9. 9. H. Rauch and S. A. Werner, Neutron Interferometry (Oxford University Press, Oxford, 2000). Google Scholar
  10. 10. M. Schlenker and J. Baruchel, J. Appl. Phys. https://doi.org/10.1063/1.324776 49, 1996 (1978). Google ScholarScitation, ISI
  11. 11. J. Baruchel, Physica B (Amsterdam) 192, 79 (1993). Google ScholarCrossref
  12. 12. C. Grünzweig, F. Pfeiffer, O. Bunk, T. Donath, G. Kühne, G. Frei, M. Dierolf, and C. David, Rev. Sci. Instrum. https://doi.org/10.1063/1.2930866 79, 053703 (2008). Google ScholarScitation, ISI
  13. 13. F. Pfeiffer, C. Grünzweig, O. Bunk, G. Frei, E. Lehmann, and C. David, Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.96.215505 96, 215505 (2006). Google ScholarCrossref, ISI
  14. 14. C. Grünzweig, C. David, O. Bunk, M. Dierolf, G. Frei, G. Kühne, J. Kohlbrecher, R. Schäfer, P. Lejcek, H. M. R. Rønnow, and F. Pfeiffer, Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.101.025504 101, 025504 (2008). Google ScholarCrossref, ISI
  15. 15. F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, Nat. Mater. https://doi.org/10.1038/nmat2096 7, 134 (2008). Google ScholarCrossref, ISI
  16. 16. O. Schärpf, J. Appl. Crystallogr. https://doi.org/10.1107/S0021889878014077 11, 626 (1978). Google ScholarCrossref, ISI
  17. 17. F. Pfeiffer, O. Bunk, C. Schulze-Briese, A. Diaz, T. Weitkamp, C. David, F. van der Veen, I. Vartanyants, and I. K. Robinson, Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.94.164801 94, 164801 (2005). Google ScholarCrossref
  18. 18. M. Strobl, C. Grünzweig, A. Hilger, I. Manke, N. Kardjilov, C. David, and F. Pfeiffer, “Neutron dark-field tomography,” Phys. Rev. Lett. (to be published). Google Scholar
  19. 19. G. Kühne, G. Frei, E. Lehmann, and P. Vontobel, Nucl. Instrum. Methods Phys. Res. A https://doi.org/10.1016/j.nima.2005.01.146 542, 264 (2005). Google ScholarCrossref, ISI
  20. 20. The (110)-oriented FeSi (Fe3wt%Si) disk had a thickness of 300μm and was cut from a Goss-oriented transformer steel with a diameter of 10 mm. We note that surface polishing was only necessary to acquire the Kerr images; neutron DFI contrast can equally well be obtained on unpolished samples. Google Scholar
  21. 21. C. Grünzweig, G. Frei, E. Lehmann, G. Kühne, and C. David, Rev. Sci. Instrum. https://doi.org/10.1063/1.2736892 78, 053708 (2007). Google ScholarScitation, ISI
  22. 22. The images were recorded using a 100μm thick Li-6/ZnS converter and fluorescence screen with a 1:1 optical lens system and a cooled charge coupled device (Fingerlake Instrumentation) (1024×1024pixels, pixel size of 24×24μm2). The effective spatial resolution was mainly determined by the intrinsic blurring in the scintillation screen to 100μm (Ref. 21). A typical exposure time for a single raw image was 30 s; typically four or eight images were taken to yield one DCI. Google Scholar
  1. © 2008 American Institute of Physics.