No Access Submitted: 14 April 2008 Accepted: 01 June 2008 Published Online: 18 July 2008
Appl. Phys. Lett. 93, 023307 (2008);
more...View Affiliations
View Contributors
  • S. Barrau
  • F. Zhang
  • A. Herland
  • W. Mammo
  • M. R. Andersson
  • O. Inganäs
Amyloid nanowires were incorporated in organic photovoltaic devices in order to enhance the transport properties. Amyloid fibrils act as a template for donor-acceptor materials. The current-voltage characteristics under illumination and in the dark display a maximum for the fill factor and the space charge limit current, respectively, at an amyloid nanowire-donor-acceptor mass ratio of 0.014:1:1, associated to a better charge transport in the donor-acceptor domains. The absorption experiments display a redshift associated to a more planar polymer backbone with increasing concentration of amyloid fibrils. Amyloid nanowires present a significant effect on the donor-acceptor materials organization.
The partial support of the EC-funded project NaPa (Contract no. NMP4-CT-2003-500120) is gratefully acknowledged. Research is also supported by the Science Council (VR), and the Strategic Research Foundation SSF through the Center of Organic Electronics (COE).
  1. 1. M. Reyes-Reyes, K. Kim, J. Dewald, R. Lopez-Sandoval, A. Avadhanula, S. Curran, and D. L. Caroll, Org. Lett. 7, 5749 (2005). Google ScholarCrossref
  2. 2. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarity, K. Emery, and Y. Yang, Nat. Mater. 4, 864 (2005). Google ScholarCrossref, ISI
  3. 3. J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, Nat. Mater. 6, 497 (2007). Google ScholarCrossref, ISI
  4. 4. J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, Science 317, 222 (2007). Google ScholarCrossref, ISI
  5. 5. A. Du Pasquier, D. D. T. Mastrogiovanni, L. A. Klein, T. Wang, and E. Garfunkel, Appl. Phys. Lett. 91, 183501 (2007). Google ScholarScitation
  6. 6. P. Ravirajan, A. M. Peiro, M. K. Nazeeruddin, M. Graetzel, D. D. C. Bradley, J. R. Durrant, and J. Nelson, J. Phys. Chem. B 110, 7635 (2006). Google ScholarCrossref, ISI
  7. 7. D. C. Olson, J. Piris, R. T. Collins, S. E. Shaheen, and D. S. Ginley, Thin Solid Films 496, 26 (2005). Google ScholarCrossref
  8. 8. W. U. Huynh, J. J. Dittmer, N. Teclemariam, D. J. Milliron, A. P. Alivisatos, and K. W. J. Barnham, Phys. Rev. B 67, 115326 (2003). Google ScholarCrossref, ISI
  9. 9. P. R. Somani, S. P. Somani, and M. Umeno, Appl. Phys. Lett. 91, 173503 (2007). Google ScholarScitation
  10. 10. S. Berson, R. De Bettignies, S. Bailly, and S. Guillerez, Adv. Funct. Mater. 17, 1377 (2007). Google ScholarCrossref, ISI
  11. 11. I. Cherny and E. Gazit, Angew. Chem., Int. Ed. 47, 2 (2008). Google ScholarCrossref
  12. 12. T. Scheibel, R. Parthasarathy, G. Sawicki, X.-M. Lin, H. Jaeger, and S. L. Lindquist, Proc. Natl. Acad. Sci. U.S.A. 100, 4527 (2003). Google ScholarCrossref, ISI
  13. 13. A. Herland, D. Thomsson, O. Mirzov, I. G. Scheblykin, and O. Inganäs, J. Mater. Chem. 18, 126 (2008). Google ScholarCrossref
  14. 14. S. Admassie, O. Inganäs, W. Mammo, E. Perzon, and M. R. Andersson, Synth. Met. 156, 614 (2006). Google ScholarCrossref
  15. 15. S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, and J. C. Hummelen, Appl. Phys. Lett. 78, 841 (2001). Google ScholarScitation, ISI
  16. 16. H. Hoppe, M. Niggemann, C. Winder, J. Kraut, R. Hiesgen, A. Hinsch, D. Meissner, and N. S. Sariciftci, Adv. Funct. Mater. 14, 1005 (2004). Google ScholarCrossref, ISI
  17. 17. F. Zhang, K. G. Jespersen, C. Björström, M. Svensson, M. R. Andersson, V. Sundström, K. Magnusson, E. Moons, A. Yartsev, and O. Inganäs, Adv. Funct. Mater. 16, 667 (2006). Google ScholarCrossref
  1. © 2008 American Institute of Physics.