No Access Submitted: 18 February 2008 Accepted: 17 April 2008 Published Online: 24 June 2008
Journal of Applied Physics 103, 123528 (2008); https://doi.org/10.1063/1.2946452
more...View Affiliations
View Contributors
  • Doo-Hyeb Youn
  • Seung-Hwan Lee
  • Han-Cheol Ryu
  • Se-Young Jung
  • Seung-Bum Kang
  • Min-Hwan Kwack
  • Sungil Kim
  • Sang-Kuk Choi
  • Mun-Cheol Baek
  • Kwang-Yong Kang
  • Chang-Seop Kim
  • Ki-Ju Yee
  • Young-Bin Ji
  • Eui-Su Lee
  • Tae-In Jeon
  • Seong-Jin Kim
  • Sanjeev Kumar
  • Gil-Ho Kim
This paper investigates how postgrowth annealing affects the structure and the electro-optical properties of low-temperature grown GaAs (LT-GaAs). A systematic study of as-grown and annealed LT-GaAs revealed that the carrier lifetime is directly related to the density of the An duster and distance between As clusters. The Ga/As compositional ratio and the crystal structure of As clusters were observed for the first time. The As/Ga ratio of the As clusters is higher than that obtained from the LT-GaAs. The carrier lifetime of the annealed LT-GaAs increases as the annealing temperature increases from 400 (less than 30 fs) to 800°C (824 fs). Under the annealing temperatures ranging from 600 to 700°C for 90 s, we observed the emission of terahertz radiation using the annealed LT-GaAs grown at temperatures ranging from 260 to 320°C.
This work was supported by a grant from the Ministry of Information and Communication in the South Korea, under Project No. A1100-0601-0110. The authors would like to thank Mr. Ho-Sang Kwack and Professor Yong-Hoon Cho of the Chungbuk National University for their analysis with photoluminescence measurements; Ms. Soo-Hyun Kang and Mr. Kyoo-Ho Jung of the Dong-Guk University for their assistance with Hall measurements; and Dr. Chul Kang of the Advanced Photonic Research for helpful discussions. The authors also thank Mrs. Jung-Suck Lee of the Electronics and Telecommunications Research Institute (ETRI) for x-ray measurements as well as Mr. Dae-Won Kang and Mr. Ju-Wook Lee of the ETRI for TEM analysis.
  1. 1. F. W. Smith, A. R. Calawa, C. Chen, M. J. Manfra, and L. J. Mahoney, IEEE Electron Device Lett. https://doi.org/10.1109/55.2046 9, 77 (1988). Google ScholarCrossref, ISI
  2. 2. A. C. Warren, J. M. Woodall, J. L. Freeout, D. Grischkowsky, D. T. McInturff, M. R. Melloch, and N. Otsuka, Appl. Phys. Lett. https://doi.org/10.1063/1.103474 57, 1331 (1990). Google ScholarScitation, ISI
  3. 3. J. N. Miller and T. S. Low, J. Cryst. Growth https://doi.org/10.1016/0022-0248(91)90942-X 111, 30 (1991). Google ScholarCrossref
  4. 4. X. Liu, A. Prasad, W. M. Chen, A. Kurpiewski, A. Stoschek, Z. Liliental-Weber, and E. R. Weber, Appl. Phys. Lett. https://doi.org/10.1063/1.112490 65, 3002 (1994). Google ScholarScitation
  5. 5. D. C. Look, Thin Solid Films https://doi.org/10.1016/0040-6090(93)90703-R 231, 61 (1993). Google ScholarCrossref
  6. 6. U. Siegner, M. Haiml, F. Morier-Genoud, R. C. Lutz, P. Specht, E. R. Weber, and U. Keller, Physica B (Amsterdam) 273–274, 733 (1999). Google ScholarCrossref
  7. 7. H. S. Loka, S. D. Benjamin, and P. W. E. Smith, Opt. Commun. https://doi.org/10.1016/S0030-4018(99)00059-0 161, 232 (1999). Google ScholarCrossref
  8. 8. M. lagadas, K. Tsagaraki, Z. Hatzopoulos, and A. Christou, J. Cryst. Growth https://doi.org/10.1016/0022-0248(93)90581-G 127, 76 (1993). Google ScholarCrossref
  9. 9. R. Takahashi, Y. Kawamura, and H. Iwamura, Appl. Phys. Lett. https://doi.org/10.1063/1.116131 68, 153 (1996). Google ScholarScitation, ISI
  10. 10. R. Mendis, C. Sydlo, J. Sigmund, M. Feiginov, P. Messener, and H. L. Hartnagel, Solid-State Electron. https://doi.org/10.1016/j.sse.2004.05.055 48, 2041 (2004). Google ScholarCrossref
  11. 11. M. R. Melloch, J. M. Woodall, and E. S. Harmon, Annu. Rev. Mater. Sci. https://doi.org/10.1146/annurev.matsci.25.1.547 25, 547 (1995). Google ScholarCrossref
  12. 12. X. Liu, A. Prasad, J. Nishino, and E. R. Weber, Appl. Phys. Lett. https://doi.org/10.1063/1.114782 67, 279 (1995). Google ScholarScitation, ISI
  13. 13. J. Behrend, M. Wassermeier, and K. H. Ploog, Surf. Sci. https://doi.org/10.1016/S0039-6028(96)01133-8 372, 307 (1997). Google ScholarCrossref
  14. 14. S. D. Benjamin, H. S. Loka, A. Othonos, and P. W. E. Smith, Appl. Phys. Lett. https://doi.org/10.1063/1.116178 68, 2544 (1996). Google ScholarScitation, ISI
  15. 15. G. C. Cho, W. Kütt, and H. Kurz, Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.65.764 65, 764 (1990). Google ScholarCrossref, ISI
  16. 16. U. Siegner, R. Fluck, G. Zhang, and U. Keller, Appl. Phys. Lett. https://doi.org/10.1063/1.117701 69, 2566 (1996). Google ScholarScitation, ISI
  17. 17. N. Katzenellenbogen and D. Grischkowsky, Appl. Phys. Lett. https://doi.org/10.1063/1.107762 61, 840 (1992). Google ScholarScitation
  1. © 2008 American Institute of Physics.