ABSTRACT
Atomic H exposure of a GaAs surface at is a relatively simple method for removing the native oxides without altering the surface stoichiometry. In-situ reflection high energy electron diffraction and angle-resolved x-ray photoelectron spectroscopy have been used to show that this procedure applied to effectively removes the native oxides resulting in an atomically clean surface. However, the bulk InGaAs stoichiometry is not preserved from this treatment. The In:Ga ratio from the substrate is found to decrease by 33%. The implications for high-mobility channel applications are discussed as the carrier mobility increases nearly linearly with the In content.
This work was supported by the MARCO Focus Center on Materials, Structures, and Devices, the National Institute of Standards and Technology, Semiconductor Electronics Division, and the Science Foundation Ireland.
- 1. For example, see, Y. Xuan, P. D. Ye, and T. Shen, Appl. Phys. Lett. https://doi.org/10.1063/1.2822892 91, 232107 (2007). Google ScholarScitation, ISI
- 2. C. W. Wilmsen, Physics and Chemistry of III-V Compound Semiconductor Interfaces, edited by C. W. Wilmsen (Plenum, New York, 1985), pp. 428–438. Google ScholarCrossref
- 3. W. M. Lau, R. N. S. Sodhi, S. Jin, S. Ingrey, N. Puetz, and A. Spring Thorpe, J. Appl. Phys. https://doi.org/10.1063/1.345757 67, 768 (1990). Google ScholarScitation
- 4. L. J. Brillson, M. L. Slade, R. E. Viturro, M. K. Kelly, N. Tache, G. Margaritondo, J. M. Woodall, P. D. Kirchner, G. D. Pettit, and S. L. Wright, Appl. Phys. Lett. https://doi.org/10.1063/1.97027 48, 1458 (1986). Google ScholarScitation
- 5. S. I. J. Ingrey, W. M. Lau, and R. N. S. Sodhi, J. Vac. Sci. Technol. A https://doi.org/10.1116/1.576091 7, 1554 (1989). Google ScholarCrossref
- 6. Properties of Lattice-Matched and Strained Indium Gallium Arsenide, edited by P. Bhattacharya (Inspec, London, 1993). Google Scholar
- 7. M. Jaffe and J. Singh, J. Appl. Phys. https://doi.org/10.1063/1.342545 65, 329 (1989). Google ScholarScitation, ISI
- 8.The epitaxial structure was grown by Intelliepi.
- 9.Thermal cracking source manufactured by MBE Components.
- 10. E. Garfunkel, T. Gustafsson, P. Lysaght, S. Stemmer, and R. Wallace, Future Fab International 21, 126 (2006). Google Scholar
- 11. F. S. Aguirre-Tostado, D. Layton, A. Herrera-Gomez, R. M. Wallace, J. Zhu, G. Larrieu, E. Maldonado, W. P. Kirk, and M. Tao, J. Appl. Phys. https://doi.org/10.1063/1.2794858 102, 084901 (2007). Google ScholarScitation
- 12. S. Sugata, A. Takamori, N. Takado, K. Asakawa, E. Miyauchi, and H. Hashimoto, J. Vac. Sci. Technol. B https://doi.org/10.1116/1.584302 6, 1087 (1988). Google ScholarCrossref
- 13. A. Khatiri, J. M. Ripalda, T. J. Krzyzewski, G. R. Bell, C. F. McConville, and T. S. Jones, Surf. Sci. https://doi.org/10.1016/j.susc.2003.11.007 548, L1 (2004). Google ScholarCrossref
- 14. C. L. Hinkle, A. M. Sonnet, E. M. Vogel, S. McDonnell, G. J. Hughes, M. Milojevic, B. Lee, F. S. Aguirre-Tostado, K. J. Choi, J. Kim, and R. M. Wallace, Appl. Phys. Lett. https://doi.org/10.1063/1.2801512 91, 163512 (2007). Google ScholarScitation, ISI
- 15. Omicron Nanotechnology, (see http://www.omicron.de). Google Scholar
- 16.AANALYZER is a software for XPS peak deconvolution.
- 17. G. P. Schwartz, J. E. Griffiths, and G. J. Gualtieri, Thin Solid Films https://doi.org/10.1016/0040-6090(82)90298-X 94, 213 (1982). Google ScholarCrossref
- 18.See, for example, Section 5.4 of Ref. 2 by C. M. Wilmsen.
- 19. M. Yamada, Y. Ide, and K. Tone, Jpn. J. Appl. Phys., Part 2 https://doi.org/10.1143/JJAP.31.L1157 31, L1157 (1992). Google ScholarCrossref, ISI
- 20. M. Yamada, Jpn. J. Appl. Phys., Part 2 https://doi.org/10.1143/JJAP.35.L651 35, L651 (1996). Google ScholarCrossref
- 21. J. A. Schaefer, Appl. Phys. A: Solids Surf. 51, 305 (1990). Google ScholarCrossref
- 22. K. R. Evans, R. Kaspi, J. E. Ehret, M. Skowronski, and C. R. Jones, J. Vac. Sci. Technol. B https://doi.org/10.1116/1.587819 13, 1820 (1995). Google ScholarCrossref
- 23. J. A. Schaefer, D. J. Frankel, and G. J. Lapeyre, Z. Phys. B: Condens. Matter https://doi.org/10.1007/BF01406593 79, 259 (1990). Google ScholarCrossref
- 24. W. Braun, Applied RHEED: Reflection High-Energy Electron Diffraction During Crystal Growth (Springer, Germany, 1999). Google Scholar
- 25. P. A. Bone, J. M. Ripalda, G. R. Bell, and T. S. Jones, Surf. Sci. https://doi.org/10.1016/j.susc.2005.12.015 600, 973 (2006). Google ScholarCrossref, ISI
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.