No Access Submitted: 29 February 2008 Accepted: 08 April 2008 Published Online: 30 April 2008
Appl. Phys. Lett. 92, 171906 (2008); https://doi.org/10.1063/1.2919047
more...View Affiliations
View Contributors
  • F. S. Aguirre-Tostado
  • M. Milojevic
  • C. L. Hinkle
  • E. M. Vogel
  • R. M. Wallace
  • S. McDonnell
  • G. J. Hughes
Atomic H exposure of a GaAs surface at 390°C is a relatively simple method for removing the native oxides without altering the surface stoichiometry. In-situ reflection high energy electron diffraction and angle-resolved x-ray photoelectron spectroscopy have been used to show that this procedure applied to In0.2Ga0.8As effectively removes the native oxides resulting in an atomically clean surface. However, the bulk InGaAs stoichiometry is not preserved from this treatment. The In:Ga ratio from the substrate is found to decrease by 33%. The implications for high-mobility channel applications are discussed as the carrier mobility increases nearly linearly with the In content.
This work was supported by the MARCO Focus Center on Materials, Structures, and Devices, the National Institute of Standards and Technology, Semiconductor Electronics Division, and the Science Foundation Ireland.
  1. 1. For example, see, Y. Xuan, P. D. Ye, and T. Shen, Appl. Phys. Lett. https://doi.org/10.1063/1.2822892 91, 232107 (2007). Google ScholarScitation, ISI
  2. 2. C. W. Wilmsen, Physics and Chemistry of III-V Compound Semiconductor Interfaces, edited by C. W. Wilmsen (Plenum, New York, 1985), pp. 428–438. Google ScholarCrossref
  3. 3. W. M. Lau, R. N. S. Sodhi, S. Jin, S. Ingrey, N. Puetz, and A. Spring Thorpe, J. Appl. Phys. https://doi.org/10.1063/1.345757 67, 768 (1990). Google ScholarScitation
  4. 4. L. J. Brillson, M. L. Slade, R. E. Viturro, M. K. Kelly, N. Tache, G. Margaritondo, J. M. Woodall, P. D. Kirchner, G. D. Pettit, and S. L. Wright, Appl. Phys. Lett. https://doi.org/10.1063/1.97027 48, 1458 (1986). Google ScholarScitation
  5. 5. S. I. J. Ingrey, W. M. Lau, and R. N. S. Sodhi, J. Vac. Sci. Technol. A https://doi.org/10.1116/1.576091 7, 1554 (1989). Google ScholarCrossref
  6. 6. Properties of Lattice-Matched and Strained Indium Gallium Arsenide, edited by P. Bhattacharya (Inspec, London, 1993). Google Scholar
  7. 7. M. Jaffe and J. Singh, J. Appl. Phys. https://doi.org/10.1063/1.342545 65, 329 (1989). Google ScholarScitation, ISI
  8. 8.The InGaAsGaAs epitaxial structure was grown by Intelliepi.
  9. 9.Thermal cracking source manufactured by MBE Components.
  10. 10. E. Garfunkel, T. Gustafsson, P. Lysaght, S. Stemmer, and R. Wallace, Future Fab International 21, 126 (2006). Google Scholar
  11. 11. F. S. Aguirre-Tostado, D. Layton, A. Herrera-Gomez, R. M. Wallace, J. Zhu, G. Larrieu, E. Maldonado, W. P. Kirk, and M. Tao, J. Appl. Phys. https://doi.org/10.1063/1.2794858 102, 084901 (2007). Google ScholarScitation
  12. 12. S. Sugata, A. Takamori, N. Takado, K. Asakawa, E. Miyauchi, and H. Hashimoto, J. Vac. Sci. Technol. B https://doi.org/10.1116/1.584302 6, 1087 (1988). Google ScholarCrossref
  13. 13. A. Khatiri, J. M. Ripalda, T. J. Krzyzewski, G. R. Bell, C. F. McConville, and T. S. Jones, Surf. Sci. https://doi.org/10.1016/j.susc.2003.11.007 548, L1 (2004). Google ScholarCrossref
  14. 14. C. L. Hinkle, A. M. Sonnet, E. M. Vogel, S. McDonnell, G. J. Hughes, M. Milojevic, B. Lee, F. S. Aguirre-Tostado, K. J. Choi, J. Kim, and R. M. Wallace, Appl. Phys. Lett. https://doi.org/10.1063/1.2801512 91, 163512 (2007). Google ScholarScitation, ISI
  15. 15. Omicron Nanotechnology, (see http://www.omicron.de). Google Scholar
  16. 16.AANALYZER is a software for XPS peak deconvolution.
  17. 17. G. P. Schwartz, J. E. Griffiths, and G. J. Gualtieri, Thin Solid Films https://doi.org/10.1016/0040-6090(82)90298-X 94, 213 (1982). Google ScholarCrossref
  18. 18.See, for example, Section 5.4 of Ref. 22. C. W. Wilmsen, Physics and Chemistry of III-V Compound Semiconductor Interfaces, edited by C. W. Wilmsen (Plenum, New York, 1985), pp. 428–438. by C. M. Wilmsen.
  19. 19. M. Yamada, Y. Ide, and K. Tone, Jpn. J. Appl. Phys., Part 2 https://doi.org/10.1143/JJAP.31.L1157 31, L1157 (1992). Google ScholarCrossref, ISI
  20. 20. M. Yamada, Jpn. J. Appl. Phys., Part 2 https://doi.org/10.1143/JJAP.35.L651 35, L651 (1996). Google ScholarCrossref
  21. 21. J. A. Schaefer, Appl. Phys. A: Solids Surf. 51, 305 (1990). Google ScholarCrossref
  22. 22. K. R. Evans, R. Kaspi, J. E. Ehret, M. Skowronski, and C. R. Jones, J. Vac. Sci. Technol. B https://doi.org/10.1116/1.587819 13, 1820 (1995). Google ScholarCrossref
  23. 23. J. A. Schaefer, D. J. Frankel, and G. J. Lapeyre, Z. Phys. B: Condens. Matter https://doi.org/10.1007/BF01406593 79, 259 (1990). Google ScholarCrossref
  24. 24. W. Braun, Applied RHEED: Reflection High-Energy Electron Diffraction During Crystal Growth (Springer, Germany, 1999). Google Scholar
  25. 25. P. A. Bone, J. M. Ripalda, G. R. Bell, and T. S. Jones, Surf. Sci. https://doi.org/10.1016/j.susc.2005.12.015 600, 973 (2006). Google ScholarCrossref, ISI
  1. © 2008 American Institute of Physics.