No Access Submitted: 31 October 2007 Accepted: 24 January 2008 Published Online: 16 April 2008
J. Chem. Phys. 128, 154707 (2008); https://doi.org/10.1063/1.2872941
more...View Affiliations
  • Computational Biophysics, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
  • a)Author to whom correspondence should be addressed. Electronic mail: .

View Contributors
  • Amol K. Thakre
  • J. T. Padding
  • W. K. den Otter
  • W. J. Briels
We use molecular dynamics simulations to study phase separation of a 50:50 (by volume) fluid mixture in a confined and curved (Taylor–Couette) geometry, consisting of two concentric cylinders. The inner cylinder may be rotated to achieve a shear flow. In nonsheared systems we observe that, for all cases under consideration, the final equilibrium state has a stacked structure. Depending on the lowest free energy in the geometry the stack may be either flat, with its normal in the z direction, or curved, with its normal in the r or θ direction. In sheared systems we make several observations. First, when starting from a prearranged stacked structure, we find that sheared gradient and vorticity stacks retain their character for the durations of the simulation, even when another configuration is preferred (as found when starting from a randomly mixed configuration). This slow transition to another configuration is attributed to a large free energy barrier between the two states. In case of stacks with a normal in the gradient direction, we find interesting interfacial waves moving with a prescribed angular velocity in the flow direction. Because such a wave is not observed in simulations with a flat geometry at similar shear rates, the curvature of the wall is an essential ingredient of this phenomenon. Second, when starting from a randomly mixed configuration, stacks are also observed, with an orientation that depends on the applied shear rate. Such transitions to other orientations are similar to observations in microphase separated diblock copolymer melts. At higher shear rates complex patterns emerge, accompanied by deviations from a homogeneous flow profile. The transition from steady stacks to complex patterns takes place around a shear rate 1/τdv, where τdv is the crossover time from diffusive to viscous dominated growth of phase-separated domains, as measured in equilibrium simulations.
A.K.T. thanks FOM and J.T.P. thanks the Netherlands Organisation for Scientific Research (NWO) for financial support.
  1. 1. H. Furukawa, Adv. Phys. https://doi.org/10.1080/00018738500101841 34, 703 (1985). Google ScholarCrossref
  2. 2. A. J. Bray, Adv. Phys. https://doi.org/10.1080/00018739400101505 43, 357 (1994). Google ScholarCrossref
  3. 3. H. Tanaka, J. Phys.: Condens. Matter https://doi.org/10.1088/0953-8984/12/15/201 12, R207 (2000). Google ScholarCrossref, ISI
  4. 4. F. Corberi, G. Gunnella, and A. Lamura, Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.83.4057 83, 4057 (1999). Google ScholarCrossref
  5. 5. T. Hashimoto and T. Kume, J. Phys. Soc. Jpn. https://doi.org/10.1143/JPSJ.61.1839 61, 1839 (1992). Google ScholarCrossref
  6. 6. T. Hashimoto, T. Takebe, and K. Asakawa, Physica A https://doi.org/10.1016/0378-4371(93)90367-D 194, 338 (1993). Google ScholarCrossref
  7. 7. T. Kume and T. Hashimoto, in Flow-Induced Structure In Polymers (American Chemical Society, Washington, DC, 1995), Vol. 597, pp. 35–47. Google ScholarCrossref
  8. 8. M. K. Endoh, M. Takenaka, and T. Hashimoto, Polymer https://doi.org/10.1016/j.polymer.2006.05.075 47, 7271 (2006). Google ScholarCrossref
  9. 9. S. I. Jury, P. Bladon, S. Krishna, and M. E. Cates, Phys. Rev. E https://doi.org/10.1103/PhysRevE.59.R2535 59, R2535 (1999). Google ScholarCrossref
  10. 10. V. M. Kendon, M. E. Cates, I. Pagonabarraga, J. C. Desplat, and P. Bladon, J. Fluid Mech. https://doi.org/10.1017/S0022112001004682 440, 147 (2001). Google ScholarCrossref
  11. 11. A. J. Wagner and J. M. Yeomans, Phys. Rev. E https://doi.org/10.1103/PhysRevE.59.4366 59, 4366 (1999). Google ScholarCrossref
  12. 12. P. Stansell, K. Stratford, J. -C. Desplat, R. Adhikari, and M. E. Cates, Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.96.085701 96, 085701 (2006). Google ScholarCrossref
  13. 13. K. Stratford, J. -C. Desplat, P. Stansell, and M. E. Cates, Phys. Rev. E https://doi.org/10.1103/PhysRevE.76.030501 76, 030501 (2007). Google ScholarCrossref
  14. 14. J. Harting, G. Guipponi, and P. V. Coveney, Phys. Rev. E https://doi.org/10.1103/PhysRevE.75.041504 75, 041504 (2007). Google ScholarCrossref
  15. 15. W. J. Ma, A. Maritan, J. R. Banavar, and J. Koplik, Phys. Rev. A https://doi.org/10.1103/PhysRevA.45.R5347 45, R5347 (1992). Google ScholarCrossref, ISI
  16. 16. M. Laradji, O. G. Mouritsen, and S. Toxvaerd, Phys. Rev. E https://doi.org/10.1103/PhysRevE.53.3673 53, 3673 (1996). Google ScholarCrossref
  17. 17. E. Velasco and S. Toxvaerd, J. Phys.: Condens. Matter https://doi.org/10.1088/0953-8984/6/23A/030 6, A205 (1994). Google ScholarCrossref
  18. 18. S. Toxvaerd, Phys. Rev. E https://doi.org/10.1103/PhysRevE.53.3710 53, 3710 (1996). Google ScholarCrossref
  19. 19. S. Toxvaerd, Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.83.5318 83, 5318 (1999). Google ScholarCrossref
  20. 20. S. Toxvaerd, J. Mol. Liq. https://doi.org/10.1016/S0167-7322(99)00114-2 84, 99 (2000). Google ScholarCrossref
  21. 21. P. Padilla and S. Toxvaerd, J. Chem. Phys. https://doi.org/10.1063/1.473788 106, 2342 (1997). Google ScholarScitation
  22. 22. R. Yamamoto and X. C. Zeng, Phys. Rev. E https://doi.org/10.1103/PhysRevE.59.3223 59, 3223 (1999). Google ScholarCrossref
  23. 23. A. K. Thakre, W. K. den Otter, and W. J. Briels, Phys. Rev. E https://doi.org/10.1103/PhysRevE.77.011503 77, 011503 (2008). Google ScholarCrossref
  24. 24. P. J. Hoogerbrugge and J. M. V. A. Koelman, Europhys. Lett. https://doi.org/10.1209/0295-5075/19/3/001 19, 155 (1992). Google ScholarCrossref
  25. 25. R. D. Groot and P. B. Warren, J. Chem. Phys. https://doi.org/10.1063/1.474784 107, 4423 (1997). Google ScholarScitation, ISI
  26. 26. T. Soddemann, B. Duenweg, and K. Kremer, Phys. Rev. E https://doi.org/10.1103/PhysRevE.68.046702 68, 046702 (2003). Google ScholarCrossref
  27. 27. K. A. Koppi, M. Tirrell, F. S. Bates, K. Almdal, and R. H. Colby, J. Phys. II https://doi.org/10.1051/jp2:1992245 2, 1941 (1992). Google ScholarCrossref
  28. 28. A. N. Morozov, A. V. Zvelindovsky, and J. G. E. M. Fraaije, Phys. Rev. E https://doi.org/10.1103/PhysRevE.64.051803 64, 051803 (2001). Google ScholarCrossref
  29. 29. P. Kindt and W. J. Briels, “The role of entanglements on the stability of microphase separated diblock copolymers in shear flow,” J. Chem. Phys. (to be published). Google Scholar
  1. © 2008 American Institute of Physics.