No Access Submitted: 31 October 2007 Accepted: 24 January 2008 Published Online: 16 April 2008
J. Chem. Phys. 128, 154707 (2008);
more...View Affiliations
  • Computational Biophysics, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
  • a)Author to whom correspondence should be addressed. Electronic mail: .

View Contributors
  • Amol K. Thakre
  • J. T. Padding
  • W. K. den Otter
  • W. J. Briels
We use molecular dynamics simulations to study phase separation of a 50:50 (by volume) fluid mixture in a confined and curved (Taylor–Couette) geometry, consisting of two concentric cylinders. The inner cylinder may be rotated to achieve a shear flow. In nonsheared systems we observe that, for all cases under consideration, the final equilibrium state has a stacked structure. Depending on the lowest free energy in the geometry the stack may be either flat, with its normal in the z direction, or curved, with its normal in the r or θ direction. In sheared systems we make several observations. First, when starting from a prearranged stacked structure, we find that sheared gradient and vorticity stacks retain their character for the durations of the simulation, even when another configuration is preferred (as found when starting from a randomly mixed configuration). This slow transition to another configuration is attributed to a large free energy barrier between the two states. In case of stacks with a normal in the gradient direction, we find interesting interfacial waves moving with a prescribed angular velocity in the flow direction. Because such a wave is not observed in simulations with a flat geometry at similar shear rates, the curvature of the wall is an essential ingredient of this phenomenon. Second, when starting from a randomly mixed configuration, stacks are also observed, with an orientation that depends on the applied shear rate. Such transitions to other orientations are similar to observations in microphase separated diblock copolymer melts. At higher shear rates complex patterns emerge, accompanied by deviations from a homogeneous flow profile. The transition from steady stacks to complex patterns takes place around a shear rate 1/τdv, where τdv is the crossover time from diffusive to viscous dominated growth of phase-separated domains, as measured in equilibrium simulations.
A.K.T. thanks FOM and J.T.P. thanks the Netherlands Organisation for Scientific Research (NWO) for financial support.
  1. 1. H. Furukawa, Adv. Phys. 34, 703 (1985). Google ScholarCrossref
  2. 2. A. J. Bray, Adv. Phys. 43, 357 (1994). Google ScholarCrossref
  3. 3. H. Tanaka, J. Phys.: Condens. Matter 12, R207 (2000). Google ScholarCrossref, ISI
  4. 4. F. Corberi, G. Gunnella, and A. Lamura, Phys. Rev. Lett. 83, 4057 (1999). Google ScholarCrossref
  5. 5. T. Hashimoto and T. Kume, J. Phys. Soc. Jpn. 61, 1839 (1992). Google ScholarCrossref
  6. 6. T. Hashimoto, T. Takebe, and K. Asakawa, Physica A 194, 338 (1993). Google ScholarCrossref
  7. 7. T. Kume and T. Hashimoto, in Flow-Induced Structure In Polymers (American Chemical Society, Washington, DC, 1995), Vol. 597, pp. 35–47. Google ScholarCrossref
  8. 8. M. K. Endoh, M. Takenaka, and T. Hashimoto, Polymer 47, 7271 (2006). Google ScholarCrossref
  9. 9. S. I. Jury, P. Bladon, S. Krishna, and M. E. Cates, Phys. Rev. E 59, R2535 (1999). Google ScholarCrossref
  10. 10. V. M. Kendon, M. E. Cates, I. Pagonabarraga, J. C. Desplat, and P. Bladon, J. Fluid Mech. 440, 147 (2001). Google ScholarCrossref
  11. 11. A. J. Wagner and J. M. Yeomans, Phys. Rev. E 59, 4366 (1999). Google ScholarCrossref
  12. 12. P. Stansell, K. Stratford, J. -C. Desplat, R. Adhikari, and M. E. Cates, Phys. Rev. Lett. 96, 085701 (2006). Google ScholarCrossref
  13. 13. K. Stratford, J. -C. Desplat, P. Stansell, and M. E. Cates, Phys. Rev. E 76, 030501 (2007). Google ScholarCrossref
  14. 14. J. Harting, G. Guipponi, and P. V. Coveney, Phys. Rev. E 75, 041504 (2007). Google ScholarCrossref
  15. 15. W. J. Ma, A. Maritan, J. R. Banavar, and J. Koplik, Phys. Rev. A 45, R5347 (1992). Google ScholarCrossref, ISI
  16. 16. M. Laradji, O. G. Mouritsen, and S. Toxvaerd, Phys. Rev. E 53, 3673 (1996). Google ScholarCrossref
  17. 17. E. Velasco and S. Toxvaerd, J. Phys.: Condens. Matter 6, A205 (1994). Google ScholarCrossref
  18. 18. S. Toxvaerd, Phys. Rev. E 53, 3710 (1996). Google ScholarCrossref
  19. 19. S. Toxvaerd, Phys. Rev. Lett. 83, 5318 (1999). Google ScholarCrossref
  20. 20. S. Toxvaerd, J. Mol. Liq. 84, 99 (2000). Google ScholarCrossref
  21. 21. P. Padilla and S. Toxvaerd, J. Chem. Phys. 106, 2342 (1997). Google ScholarScitation
  22. 22. R. Yamamoto and X. C. Zeng, Phys. Rev. E 59, 3223 (1999). Google ScholarCrossref
  23. 23. A. K. Thakre, W. K. den Otter, and W. J. Briels, Phys. Rev. E 77, 011503 (2008). Google ScholarCrossref
  24. 24. P. J. Hoogerbrugge and J. M. V. A. Koelman, Europhys. Lett. 19, 155 (1992). Google ScholarCrossref
  25. 25. R. D. Groot and P. B. Warren, J. Chem. Phys. 107, 4423 (1997). Google ScholarScitation, ISI
  26. 26. T. Soddemann, B. Duenweg, and K. Kremer, Phys. Rev. E 68, 046702 (2003). Google ScholarCrossref
  27. 27. K. A. Koppi, M. Tirrell, F. S. Bates, K. Almdal, and R. H. Colby, J. Phys. II 2, 1941 (1992). Google ScholarCrossref
  28. 28. A. N. Morozov, A. V. Zvelindovsky, and J. G. E. M. Fraaije, Phys. Rev. E 64, 051803 (2001). Google ScholarCrossref
  29. 29. P. Kindt and W. J. Briels, “The role of entanglements on the stability of microphase separated diblock copolymers in shear flow,” J. Chem. Phys. (to be published). Google Scholar
  1. © 2008 American Institute of Physics.