No Access Submitted: 31 August 2007 Accepted: 07 November 2007 Published Online: 14 January 2008
Journal of Applied Physics 103, 013511 (2008); https://doi.org/10.1063/1.2829808
more...View Affiliations
  • a)Also at Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW 2522, Australia.

    b)Author to whom correspondence should be addressed. Electronic mail: [email protected]

View Contributors
  • W. X. Li
  • R. H. Chen
  • Y. Li
  • M. Y. Zhu
  • H. M. Jin
  • R. Zeng
  • S. X. Dou
  • B. Lu
The influence of sintering temperature on the critical transition temperature Tc and critical current density Jc for the MgB2 superconductor was investigated systematically with the observation of Raman scattering measurement and flux pinning force Fp analysis. The enhanced E2g mode in Raman spectra with increasing in situ sintering temperature shows gradual strengthening of the electron-phonon coupling in MgB2, which means that the crystals become more harmonic after higher temperature sintering. However, the crystal harmonicity is degraded for samples sintered at even higher temperature due to Mg deficiency. A possible explanation for the Jc(H) performance, which is in accordance with the Raman spectroscopy observation and Fp analysis, is the cooperation between the electron-phonon coupling in the E2g mode and the flux pinning centers, mainly originating from the lattice distortion due to the different sintering temperatures.
The authors are grateful to Dr. T. Silver for fruitful discussion. The authors also thank the Natural Science Foundation of China (Grant No. 50471100), the Australian Research Council, Hyper Tech Research, Inc., and CMS Alphatech International Ltd. for their financial support.
  1. 1. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Nature (London) https://doi.org/10.1038/35065039 410, 63 (2001). Google ScholarCrossref, ISI
  2. 2. S. L. Bud’ko, G. Lapertot, C. Petrovic, C. E. Cunningham, N. Anderson, and P. C. Canfield, Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.86.1877 86, 1877 (2001). Google ScholarCrossref, ISI
  3. 3. T. Vogt, G. Schneider, J. A. Hriljac, G. Yang, and J. S. Abell, Phys. Rev. B https://doi.org/10.1103/PhysRevB.63.220505 63, 220505 (2001). Google ScholarCrossref
  4. 4. D. G. Hinks, H. Claus, and J. D. Jorgensen, Nature (London) https://doi.org/10.1038/35078037 411, 457 (2001). Google ScholarCrossref
  5. 5. H. Uchiyama, K. M. Shen, S. Lee, A. Damascelli, D. H. Lu, D. L. Feng, Z. X. Shen, and S. Tajima, Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.88.157002 88, 157002 (2002). Google ScholarCrossref
  6. 6. E. A. Yelland, J. R. Cooper, A. Carrington, N. E. Hussey, P. J. Meeson, S. Lee, A. Yamamoto, and S. Tajima, Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.88.217002 88, 217002 (2002). Google ScholarCrossref
  7. 7. Y. Eltsev, K. Nakao, S. Lee, T. Masui, N. Chikumoto, S. Tajima, N. Koshizuka, and M. Murakami, Phys. Rev. B 66, 180504(R) (2002). Google ScholarCrossref
  8. 8. J. Kortus, I. I. Mazin, K. D. Belashchenko, V. P. Antropov, and L. L. Boyer, Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.86.4656 86, 4656 (2001). Google ScholarCrossref, ISI
  9. 9. J. M. An and W. E. Pickett, Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.86.4366 86, 4366 (2001). Google ScholarCrossref
  10. 10. K. P. Bohnen, R. Heid, and B. Renker, Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.86.5771 86, 5771 (2001). Google ScholarCrossref
  11. 11. T. Yildirim, O. Gulseren, J. W. Lynn, C. M. Brown, T. J. Udovic, Q. Huang, N. Rogado, K. A. Regan, M. A. Hayward, J. S. Slusky, T. He, M. K. Haas, P. Khalifah, K. Inumaru, and R. J. Cava, Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.87.037001 87, 037001 (2001). Google ScholarCrossref
  12. 12. J. Hlinka, I. Gregora, J. Pokorny, A. Plecenik, P. Kus, L. Satrapisky, and S. Benacka, Phys. Rev. B https://doi.org/10.1103/PhysRevB.64.140503 64, 140503 (2001). Google ScholarCrossref
  13. 13. A. F. Goncharov, V. V. Struzhkin, E. Gregoryanz, J. Hu, R. J. Hemley, H. Mao, G. Lapertot, S. L. Bud’ko, and P. C. Canfield, Phys. Rev. B https://doi.org/10.1103/PhysRevB.64.100509 64, 100509 (2001). Google ScholarCrossref
  14. 14. K. P. Meletov, M. P. Kulakov, N. N. Kolesnikov, J. Arvanitidis, and G. A. Kourouklis, JETP Lett. 75, 406 (2002). Google ScholarCrossref
  15. 15. I. Loa and K. Syassen, Solid State Commun. https://doi.org/10.1016/S0038-1098(01)00095-3 118, 279 (2001). Google ScholarCrossref
  16. 16. K. Kunc, I. Loa, K. Syassen, R. K. Kremer, and K. Ahn, J. Phys.: Condens. Matter https://doi.org/10.1088/0953-8984/13/44/310 13, 9945 (2001). Google ScholarCrossref, ISI
  17. 17. J. H. Kim, S. X. Dou, J. L. Wang, D. Q. Shi, X. Xu, M. S. A. Hossain, W. K. Yeoh, S. Choi, and T. Kiyoshi, Supercond. Sci. Technol. https://doi.org/10.1088/0953-2048/20/5/007 20, 448 (2007). Google ScholarCrossref
  18. 18. W. K. Yeoh, J. Horvat, J. H. Kim, X. Xu, and S. X. Dou, Appl. Phys. Lett. https://doi.org/10.1063/1.2715026 90, 122502 (2007). Google ScholarScitation
  19. 19. J. W. Quilty, S. Lee, and S. Tajima, Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.90.207006 90, 207006 (2003). Google ScholarCrossref
  20. 20. M. Cardona, Physica C 317–318, 30 (1999). Google ScholarCrossref
  21. 21. P. M. Rafailov, S. Bahrs, and C. Thomsen, Phys. Status Solidi B 226, R9 (2001). Google ScholarCrossref
  22. 22. L. Shi, H. R. Zhang, L. Chen, and Y. Feng, J. Phys.: Condens. Matter https://doi.org/10.1088/0953-8984/16/36/019 16, 6541 (2004). Google ScholarCrossref
  23. 23. J. W. Quilty, S. Lee, A. Yamamoto, and S. Tajima, Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.88.087001 88, 087001 (2002). Google ScholarCrossref
  24. 24. H. Martinho, C. Rettori, P. G. Pagliuso, A. A. Martin, N. O. Moreno, and J. L. Sarrao, Solid State Commun. https://doi.org/10.1016/S0038-1098(02)00877-3 125, 499 (2003). Google ScholarCrossref
  25. 25. D. Di Castro, E. Cappelluti, M. Lavagnini, A. Sacchetti, A. Palenzona, M. Putti, and P. Postorino, Phys. Rev. B https://doi.org/10.1103/PhysRevB.74.100505 74, 100505 (2006). Google ScholarCrossref
  26. 26. M. Calandra, M. Lazzeri, and F. Mauri, Physica C https://doi.org/10.1016/j.physc.2007.01.021 456, 38 (2007). Google ScholarCrossref
  27. 27. A. Shukla, M. Calandra, M. d’Astuto, M. Lazzeri, F. Mauri, C. Bellin, M. Krisch, J. Karpinski, S. M. Kazakov, J. Jun, D. Daghero, and K. Parlinski, Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.90.095506 90, 095506 (2003). Google ScholarCrossref, ISI
  28. 28. Y. Kong, O. V. Dolgov, O. Jepsen, and O. K. Andersen, Phys. Rev. B 64, 020501(R) (2001). Google ScholarCrossref
  29. 29. M. d’Astuto, M. Calandra, S. Reich, A. Shukla, M. Lazzeri, F. Mauri, J. Karpinski, N. D. Zhigadlo, A. Bossak, and M. Krisch, Phys. Rev. B 75, 174508 (2007). Google ScholarCrossref
  30. 30. A. Q. R. Baron, H. Uchiyama, Y. Tanaka, S. Tsutsui, D. Ishikawa, S. Lee, R. Heid, K.-P. Bohnen, S. Tajima, and T. Ishikawa, Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.92.197004 92, 197004 (2004). Google ScholarCrossref, ISI
  31. 31. M. Eisterer, R. Müller, K. Schöppl, H. W. Weber, S. Soltanian, and S. X. Dou, Supercond. Sci. Technol. 20, S–117 (2007). Google ScholarCrossref
  32. 32. R. Osborn, E. A. Goremychkin, A. I. Kolesnikov, and D. G. Hinks, Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.87.017005 87, 017005 (2001). Google ScholarCrossref, ISI
  33. 33. J. M. Rowell, Supercond. Sci. Technol. https://doi.org/10.1088/0953-2048/16/6/201 16, R17 (2003). Google ScholarCrossref, ISI
  34. 34. D. Dew-Hughes, Philos. Mag. https://doi.org/10.1080/14786439808206556 30, 293 (1974). Google ScholarCrossref, ISI
  1. © 2008 American Institute of Physics.