ABSTRACT
The influence of sintering temperature on the critical transition temperature and critical current density for the superconductor was investigated systematically with the observation of Raman scattering measurement and flux pinning force analysis. The enhanced mode in Raman spectra with increasing in situ sintering temperature shows gradual strengthening of the electron-phonon coupling in , which means that the crystals become more harmonic after higher temperature sintering. However, the crystal harmonicity is degraded for samples sintered at even higher temperature due to Mg deficiency. A possible explanation for the performance, which is in accordance with the Raman spectroscopy observation and analysis, is the cooperation between the electron-phonon coupling in the mode and the flux pinning centers, mainly originating from the lattice distortion due to the different sintering temperatures.
ACKNOWLEDGMENTS
The authors are grateful to Dr. T. Silver for fruitful discussion. The authors also thank the Natural Science Foundation of China (Grant No. 50471100), the Australian Research Council, Hyper Tech Research, Inc., and CMS Alphatech International Ltd. for their financial support.
- 1. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Nature (London) https://doi.org/10.1038/35065039 410, 63 (2001). Google ScholarCrossref, ISI
- 2. S. L. Bud’ko, G. Lapertot, C. Petrovic, C. E. Cunningham, N. Anderson, and P. C. Canfield, Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.86.1877 86, 1877 (2001). Google ScholarCrossref, ISI
- 3. T. Vogt, G. Schneider, J. A. Hriljac, G. Yang, and J. S. Abell, Phys. Rev. B https://doi.org/10.1103/PhysRevB.63.220505 63, 220505 (2001). Google ScholarCrossref
- 4. D. G. Hinks, H. Claus, and J. D. Jorgensen, Nature (London) https://doi.org/10.1038/35078037 411, 457 (2001). Google ScholarCrossref
- 5. H. Uchiyama, K. M. Shen, S. Lee, A. Damascelli, D. H. Lu, D. L. Feng, Z. X. Shen, and S. Tajima, Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.88.157002 88, 157002 (2002). Google ScholarCrossref
- 6. E. A. Yelland, J. R. Cooper, A. Carrington, N. E. Hussey, P. J. Meeson, S. Lee, A. Yamamoto, and S. Tajima, Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.88.217002 88, 217002 (2002). Google ScholarCrossref
- 7. Y. Eltsev, K. Nakao, S. Lee, T. Masui, N. Chikumoto, S. Tajima, N. Koshizuka, and M. Murakami, Phys. Rev. B 66, 180504(R) (2002). Google ScholarCrossref
- 8. J. Kortus, I. I. Mazin, K. D. Belashchenko, V. P. Antropov, and L. L. Boyer, Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.86.4656 86, 4656 (2001). Google ScholarCrossref, ISI
- 9. J. M. An and W. E. Pickett, Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.86.4366 86, 4366 (2001). Google ScholarCrossref
- 10. K. P. Bohnen, R. Heid, and B. Renker, Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.86.5771 86, 5771 (2001). Google ScholarCrossref
- 11. T. Yildirim, O. Gulseren, J. W. Lynn, C. M. Brown, T. J. Udovic, Q. Huang, N. Rogado, K. A. Regan, M. A. Hayward, J. S. Slusky, T. He, M. K. Haas, P. Khalifah, K. Inumaru, and R. J. Cava, Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.87.037001 87, 037001 (2001). Google ScholarCrossref
- 12. J. Hlinka, I. Gregora, J. Pokorny, A. Plecenik, P. Kus, L. Satrapisky, and S. Benacka, Phys. Rev. B https://doi.org/10.1103/PhysRevB.64.140503 64, 140503 (2001). Google ScholarCrossref
- 13. A. F. Goncharov, V. V. Struzhkin, E. Gregoryanz, J. Hu, R. J. Hemley, H. Mao, G. Lapertot, S. L. Bud’ko, and P. C. Canfield, Phys. Rev. B https://doi.org/10.1103/PhysRevB.64.100509 64, 100509 (2001). Google ScholarCrossref
- 14. K. P. Meletov, M. P. Kulakov, N. N. Kolesnikov, J. Arvanitidis, and G. A. Kourouklis, JETP Lett. 75, 406 (2002). Google ScholarCrossref
- 15. I. Loa and K. Syassen, Solid State Commun. https://doi.org/10.1016/S0038-1098(01)00095-3 118, 279 (2001). Google ScholarCrossref
- 16. K. Kunc, I. Loa, K. Syassen, R. K. Kremer, and K. Ahn, J. Phys.: Condens. Matter https://doi.org/10.1088/0953-8984/13/44/310 13, 9945 (2001). Google ScholarCrossref, ISI
- 17. J. H. Kim, S. X. Dou, J. L. Wang, D. Q. Shi, X. Xu, M. S. A. Hossain, W. K. Yeoh, S. Choi, and T. Kiyoshi, Supercond. Sci. Technol. https://doi.org/10.1088/0953-2048/20/5/007 20, 448 (2007). Google ScholarCrossref
- 18. W. K. Yeoh, J. Horvat, J. H. Kim, X. Xu, and S. X. Dou, Appl. Phys. Lett. https://doi.org/10.1063/1.2715026 90, 122502 (2007). Google ScholarScitation
- 19. J. W. Quilty, S. Lee, and S. Tajima, Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.90.207006 90, 207006 (2003). Google ScholarCrossref
- 20. M. Cardona, Physica C 317–318, 30 (1999). Google ScholarCrossref
- 21. P. M. Rafailov, S. Bahrs, and C. Thomsen, Phys. Status Solidi B 226, R9 (2001). Google ScholarCrossref
- 22. L. Shi, H. R. Zhang, L. Chen, and Y. Feng, J. Phys.: Condens. Matter https://doi.org/10.1088/0953-8984/16/36/019 16, 6541 (2004). Google ScholarCrossref
- 23. J. W. Quilty, S. Lee, A. Yamamoto, and S. Tajima, Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.88.087001 88, 087001 (2002). Google ScholarCrossref
- 24. H. Martinho, C. Rettori, P. G. Pagliuso, A. A. Martin, N. O. Moreno, and J. L. Sarrao, Solid State Commun. https://doi.org/10.1016/S0038-1098(02)00877-3 125, 499 (2003). Google ScholarCrossref
- 25. D. Di Castro, E. Cappelluti, M. Lavagnini, A. Sacchetti, A. Palenzona, M. Putti, and P. Postorino, Phys. Rev. B https://doi.org/10.1103/PhysRevB.74.100505 74, 100505 (2006). Google ScholarCrossref
- 26. M. Calandra, M. Lazzeri, and F. Mauri, Physica C https://doi.org/10.1016/j.physc.2007.01.021 456, 38 (2007). Google ScholarCrossref
- 27. A. Shukla, M. Calandra, M. d’Astuto, M. Lazzeri, F. Mauri, C. Bellin, M. Krisch, J. Karpinski, S. M. Kazakov, J. Jun, D. Daghero, and K. Parlinski, Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.90.095506 90, 095506 (2003). Google ScholarCrossref, ISI
- 28. Y. Kong, O. V. Dolgov, O. Jepsen, and O. K. Andersen, Phys. Rev. B 64, 020501(R) (2001). Google ScholarCrossref
- 29. M. d’Astuto, M. Calandra, S. Reich, A. Shukla, M. Lazzeri, F. Mauri, J. Karpinski, N. D. Zhigadlo, A. Bossak, and M. Krisch, Phys. Rev. B 75, 174508 (2007). Google ScholarCrossref
- 30. A. Q. R. Baron, H. Uchiyama, Y. Tanaka, S. Tsutsui, D. Ishikawa, S. Lee, R. Heid, K.-P. Bohnen, S. Tajima, and T. Ishikawa, Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.92.197004 92, 197004 (2004). Google ScholarCrossref, ISI
- 31. M. Eisterer, R. Müller, K. Schöppl, H. W. Weber, S. Soltanian, and S. X. Dou, Supercond. Sci. Technol. 20, S–117 (2007). Google ScholarCrossref
- 32. R. Osborn, E. A. Goremychkin, A. I. Kolesnikov, and D. G. Hinks, Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.87.017005 87, 017005 (2001). Google ScholarCrossref, ISI
- 33. J. M. Rowell, Supercond. Sci. Technol. https://doi.org/10.1088/0953-2048/16/6/201 16, R17 (2003). Google ScholarCrossref, ISI
- 34. D. Dew-Hughes, Philos. Mag. https://doi.org/10.1080/14786439808206556 30, 293 (1974). Google ScholarCrossref, ISI
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.