No Access Submitted: 14 June 2007 Accepted: 11 July 2007 Published Online: 02 August 2007
Appl. Phys. Lett. 91, 051919 (2007); https://doi.org/10.1063/1.2767972
more...View Affiliations
View Contributors
  • Ingo Salzmann
  • Steffen Duhm
  • Ricarda Opitz
  • Jürgen P. Rabe
  • Norbert Koch
Thin films of pentacene (P) have been vacuum codeposited on SiO2 with low concentrations of 6,13-pentacenequinone (PQ) in order to investigate the impact on the pentacene thin film structure. Within a range of 2%–20% PQ concentration no intercalation of the compounds can be observed by means of x-ray diffraction and infrared absorption spectroscopy. The crystalline quality of the P films stays unchanged by the presence of PQ, whereas P bulk phase contributions are being suppressed at PQ concentrations 5%, which could be confirmed by means of atomic force microscopy. From the results the authors suggest phase-separated PQ growth as well as PQ nucleation at P grain boundaries.
The authors thank M. Oehzelt (Graz University of Technology, Austria) for fruitful discussions and W. Caliebe (HASYLAB, Hamburg, Germany) for experimental support. This work was supported by the Sfb448 (DFG). One of the authors (R.O.) acknowledges support by the “Berliner Programm zur Förderung der Chancengleichheit für Frauen in Forschung und Lehre,” and another author (N.K.) by the Emmy Noether-Program (DFG).
  1. 1. Y.-Y. Lin, D. Gundlach, S. Nelson, and T. Jackson, IEEE Electron Device Lett. https://doi.org/10.1109/55.644085 18, 606 (1997). Google ScholarCrossref
  2. 2. C. D. Dimitrakopoulos, S. Purushothaman, J. Kymissis, A. Callegari, and J. M. Shaw, Science https://doi.org/10.1126/science.283.5403.822 283, 822 (1999). Google ScholarCrossref
  3. 3. S. Lee, B. Koo, J. Shin, E. Lee, H. Park, and H. Kim, Appl. Phys. Lett. https://doi.org/10.1063/1.2196475 88, 162109 (2006). Google ScholarScitation, ISI
  4. 4. B. Nickel, R. Barabash, R. Ruiz, N. Koch, A. Kahn, L. C. Feldman, R. F. Haglund, and G. Scoles, Phys. Rev. B https://doi.org/10.1103/PhysRevB.70.125401 70, 125401 (2004). Google ScholarCrossref
  5. 5. K. Puntambekar, J. Dong, G. Haugstad, and C. D. Frisbie, Russ. J. Math. Phys. 16, 879 (2006). Google Scholar
  6. 6. O. D. Jurchescu, J. Baas, and T. T. M. Palstra, Appl. Phys. Lett. https://doi.org/10.1063/1.1704874 84, 3061 (2004). Google ScholarScitation, ISI
  7. 7. N. Koch, I. Salzmann, R. L. Johnson, J. Pflaum, R. Friedlein, and J. P. Rabe, Org. Electron. https://doi.org/10.1016/j.orgel.2006.07.010 7, 537 (2006). Google ScholarCrossref
  8. 8. A. Vollmer, O. D. Jurchescu, I. Arfaoui, I. Salzmann, T. T. M. Palstra, P. Rudolf, J. Niemax, J. Pflaum, J. P. Rabe, and N. Koch, Eur. Phys. J. E https://doi.org/10.1140/epje/i2005-10012-0 17, 339 (2005). Google ScholarCrossref
  9. 9. I. Salzmann, R. Opitz, S. Rogaschewski, J. Rabe, and N. Koch, Phys. Rev. B https://doi.org/10.1103/PhysRevB.75.174108 75, 174108 (2007). Google ScholarCrossref
  10. 10. R. Ruiz, D. Choudhary, B. Nickel, T. Toccoli, K.-C. Chang, A. Mayer, P. Clancy, J. Blakely, R. Headrick, S. Iannotta, and G. Malliaras, Chem. Mater. https://doi.org/10.1021/cm049563q 16, 4497 (2004). Google ScholarCrossref, ISI
  11. 11. M. Oehzelt, R. Resel, C. Suess, R. Friedlein, and W. R. Salaneck, J. Chem. Phys. https://doi.org/10.1063/1.2150826 124, 054711 (2006). Google ScholarScitation
  12. 12. C. D. Dimitrakopoulos, A. R. Brown, and A. Pomp, J. Appl. Phys. https://doi.org/10.1063/1.363032 80, 2501 (1996). Google ScholarScitation, ISI
  13. 13. C. C. Mattheus, A. B. Dros, J. Baas, G. T. Oostergetel, A. Meetsma, J. L. de Boer, and T. M. Palstra, Synth. Met. https://doi.org/10.1016/S0379-6779(02)00467-8 138, 475 (2003). Google ScholarCrossref
  14. 14. G. K. Williamson and W. H. Hall, Acta Metall. https://doi.org/10.1016/0001-6160(53)90006-6 1, 22 (1953). Google ScholarCrossref
  15. 15. J. I. Langford, Accuracy in Powder Diffraction II, National Institute of Standards and Technology Special Publication Vol. 846 (NIST, Boulder, CO, 1992), pp. 110–126. Google Scholar
  16. 16. R. Snyder, J. Fiala, and H. J. Bunge, Defect and Microstructure Analysis by Diffraction (Oxford University Press, New York, 1999). Google Scholar
  17. 17. P. Scardi, M. Leoni, and R. Delhez, J. Appl. Crystallogr. https://doi.org/10.1107/S0021889804004583 37, 381 (2004). Google ScholarCrossref
  18. 18. N. Koch, A. Vollmer, I. Salzmann, B. Nickel, H. Weiss, and J. P. Rabe, Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.96.156803 96, 156803 (2006). Google ScholarCrossref
  19. 19. J. Szczepanski, C. Wehlburg, and M. Vala, Chem. Phys. Lett. https://doi.org/10.1016/0009-2614(94)01340-2 232, 221 (1995). Google ScholarCrossref
  20. 20. D. M. Hudgins and S. A. Sandford, J. Phys. Chem. A https://doi.org/10.1021/jp983482y 102, 344 (1998). Google ScholarCrossref, ISI
  21. 21.The intensity ratio of the (001) reflection of the thin film phase and the (110) reflection of the bulk phase in the spectrum of the pure P film was determined to approximately 1:104, therefore we expect the bulk contribution to be undetectable with FTIR.
  22. 22. M. Avram and G. D. Mateescu, Infrared spectroscopy (Wiley, New York, 1972). Google Scholar
  23. 23. D. Hadži and N. Sheppard, J. Am. Chem. Soc. https://doi.org/10.1021/ja01155a525 73, 5460 (1951). Google ScholarCrossref
  24. 24.The flat features assigned to PQ areas in the codeposited film are being found near grain boundaries and cannot be observed in the pure P film, whereas the areas assigned to the P bulk phase in the pure P film cannot be observed at PQ ratios >5% in the codeposited films.
  1. © 2007 American Institute of Physics.