No Access Submitted: 18 May 2007 Accepted: 08 July 2007 Published Online: 30 July 2007
Appl. Phys. Lett. 91, 053103 (2007); https://doi.org/10.1063/1.2767204
more...View Affiliations
  • a)Author to whom correspondence should be addressed; electronic mail: [email protected]

    b)Permanent address: S. S. Kutateladze Institute of Thermophysics, Siberian Branch of Russian Academy of Sciences, 1 Acad. Lavrentyev Ave., 630090 Novosibirsk, Russia.

View Contributors
  • Wu-Ping Huang
  • Henry H. Cheng
  • Alexander I. Fedorchenko
  • An-Bang Wang
The authors report strain measurement on bilayer wrinkling silicon-germanium (SiGe) thin film. In combination of atomic force microscopy and ultraviolet micro-Raman measurement, the relationship between the spatial profile and strain distribution is established. Theoretical analysis on the mechanism of strain relaxation shows that, in contrast to self-rolling nanotube, both bending and shearing force play an important role in determining the morphology. The behavior demonstrated in the SiGe system should also exist in a wide range of material systems under various strain situations. This study advances the understanding of nanostructure engineered by strain and has significant implications on the performance of nanodevices.
The authors would like to thank the National Science Council of the Republic of China for its financial support under Grant No. 95-2112-M-002-050-MY3. The authors thank G. Sun for helpful discussions. Technique support from United Microelectronics Corporation (UMC) is greatly acknowledged.
  1. 1. S. E. Thompson, M. Armstrong, C. Auth, M. Alavi, M. Buehler, R. Chau, S. Cea, T. Ghani, G. Glass, T. Hoffman, C. H. Jan, C. Kenyon, J. Klaus, K. Kuhn, Z. Ma, B. Mcintyre, K. Mistry, A. Murthy, B. Obradovic, R. Nagisetty, P. Nguyen, S. Sivakumar, R. Shaheed, L. Shifren, B. Tufts, S. Tyagi, M. Bohr, and Y. El-Mansy, IEEE Trans. Electron Devices https://doi.org/10.1109/TED.2004.836648 51, 1790 (2004). Google ScholarCrossref, ISI
  2. 2. D. J. Paul, Semicond. Sci. Technol. https://doi.org/10.1088/0268-1242/19/10/R02 19, R75 (2004). Google ScholarCrossref
  3. 3. O. G. Schmidt and K. Eberl, Nature (London) https://doi.org/10.1038/35065525 410, 168 (2001). Google ScholarCrossref
  4. 4. S. V. Golod, V. Ya. Prinz, V. I. Mashanov, and A. K. Gutakovsky, Semicond. Sci. Technol. https://doi.org/10.1088/0268-1242/16/3/311 16, 181 (2001). Google ScholarCrossref
  5. 5. A. Cho, Science 313, 164 (2006). Google ScholarCrossref
  6. 6. F. Liu, P. Rugheimer, E. Mateeva, D. E. Savage, and M. G. Lagally, Nature (London) https://doi.org/10.1038/416498a 416, 498 (2002). Google ScholarCrossref
  7. 7. R. Huang and Z. Suo, J. Appl. Phys. https://doi.org/10.1063/1.1427407 91, 1135 (2002). Google ScholarScitation, ISI
  8. 8. M. M. Roberts, L. J. Klein, D. E. Savage, K. A. Slinker, M. Friesen, G. Celler, M. A. Eriksson, and M. G. Lagally, Nat. Mater. https://doi.org/10.1038/nmat1606 5, 388 (2006). Google ScholarCrossref
  9. 9. J. P. Dismukes, L. Ekstroms, and R. J. Paff, J. Phys. Chem. https://doi.org/10.1021/j100792a049 68, 3021 (1964). Google ScholarCrossref
  10. 10. J. C. Tsang, P. M. Mooney, F. Dacol, and J. O. Chu, J. Appl. Phys. https://doi.org/10.1063/1.356554 75, 8098 (1994). Google ScholarScitation, ISI
  11. 11. A. I. Fedorchenko, A. B. Wang, V. I. Mashanov, W. P. Huang, and H. H. Cheng, Appl. Phys. Lett. https://doi.org/10.1063/1.2236299 89, 043119 (2006). Google ScholarScitation
  12. 12. S. K. Kim, L. Xue, and S. Tiwari, Proceedings of the IEEE International SOI Conference (IEEE, New York, 2004), pp. 136–138. Google Scholar
  1. © 2007 American Institute of Physics.