No Access Submitted: 18 April 2007 Accepted: 04 July 2007 Published Online: 24 July 2007
Appl. Phys. Lett. 91, 041902 (2007);
more...View Affiliations
View Contributors
  • Shogo Ishizuka
  • Hajime Shibata
  • Akimasa Yamada
  • Paul Fons
  • Keiichiro Sakurai
  • Koji Matsubara
  • Shigeru Niki
Cu(In,Ga)Se2 (CIGS) thin films were grown using a rf-cracked Se-radical beam source. A unique combination of film properties, a highly dense and smooth surface with large grain size, is shown. These features seem to have no significant influence on the photovoltaic performance. Defect control in bulk CIGS leading to corresponding variations in the electrical and photoluminescence properties was found to be possible by regulating the Se-radical source parameters. A competitive energy conversion efficiency of 17.5%, comparable to that of a Se-evaporative source grown CIGS device, has been demonstrated from a solar cell fabricated using a Se-radical source grown CIGS absorber.
This work was supported in part by the New Energy and Industrial Technology Development Organization (NEDO).
  1. 1. J. E. Jaffe and A. Zunger, Phys. Rev. B 29, 1882 (1984). Google ScholarCrossref, ISI
  2. 2. P. D. Paulson, R. W. Birkmire, and W. N. Shafarman, J. Appl. Phys. 94, 879 (2003). Google ScholarScitation, ISI
  3. 3. R. R. Gay, Sol. Energy Mater. Sol. Cells 47, 19 (1997). Google ScholarCrossref, ISI
  4. 4. M. A. Contreras, K. Ramanathan, J. AbuShama, F. Hasoon, D. L. Young, B. Egaas, and R. Noufi, Prog. Photovoltaics 13, 209 (2005). Google ScholarCrossref, ISI
  5. 5. A. N. Nesmeyanov, Vapor Pressure of the Chemical Elements, edited by R. Gary (Elsevier, Amsterdam/London/NewYork, 1963), p. 327. Google Scholar
  6. 6. D. A. Cammack, K. Shahzad, and T. Marshall, Appl. Phys. Lett. 56, 845 (1990). Google ScholarScitation, ISI
  7. 7. G. Herzberg, The Spectra and Structures of Simple Free Radicals: An Introduction to Molecular Spectroscopy (Cornell University Press, New York, 1971), p. 2. Google Scholar
  8. 8. T. Hariu, S. Yamauchi, S. F. Fang, T. Ohshima, and T. Hamada, J. Cryst. Growth 136, 157 (1994). Google ScholarCrossref, ISI
  9. 9. S. Ishizuka, K. Sakurai, A. Yamada, K. Matsubara, P. Fons, K. Iwata, S. Nakamura, Y. Kimura, T. Baba, H. Nakanishi, T. Kojima, and S. Niki, Proceedings of the 19th European Photovoltaic Solar Energy Conference and Exhibition, Paris (WIP, Munich, 2004), p. 1729. Google Scholar
  10. 10. Google Scholar
  11. 11. L. C. Calhoun and R. M. Park, J. Appl. Phys. 85, 490 (1999). Google ScholarScitation, ISI
  12. 12. M. A. Contreras, J. Tuttle, A. Gabor, A. Tennant, K. Ramanathan, S. Asher, A. Franz, J. Keane, L. Wang, and R. Noufi, Sol. Energy Mater. Sol. Cells 41/42, 231 (1996). Google ScholarCrossref, ISI
  13. 13. S. Ishizuka, K. Sakurai, A. Yamada, K. Matsubara, H. Shibata, M. Yonemura, S. Nakamura, H. Nakanishi, T. Kojima, and S. Niki, Proceedings of the 2006 IEEE Fourth World Conference on Photovoltaic Energy Conversion, Hawaii (IEEE, New York, 2006), p. 338. Google ScholarCrossref
  14. 14. S.-H. Wei, S. B. Zhang, and A. Zunger, Appl. Phys. Lett. 72, 3199 (1998). Google ScholarScitation, ISI
  15. 15. S. B. Zhang, S.-H. Wei, and A. Zunger, Phys. Rev. B 57, 9642 (1998). Google ScholarCrossref, ISI
  16. 16. J. I. Pankove and J. A. Hutchby, J. Appl. Phys. 47, 5387 (1976). Google ScholarScitation, ISI
  17. 17. M. E. Lin, B. N. Sverdlov, and H. Morkoç, J. Appl. Phys. 74, 5038 (1993). Google ScholarScitation, ISI
  18. 18. R. Scheer, I. Luck, M. Kanis, M. Matsui, T. Watanabe, and T. Yamamoto, Thin Solid Films 392, 1 (2001). Google ScholarCrossref, ISI
  19. 19. R. J. Molnar and T. D. Moustakas, J. Appl. Phys. 76, 4587 (1994). Google ScholarScitation, ISI
  20. 20. M. N. Ruberto and A. Rothwarf, J. Appl. Phys. 61, 4662 (1987). Google ScholarScitation, ISI
  1. © 2007 American Institute of Physics.