No Access Submitted: 31 January 2007 Accepted: 28 May 2007 Published Online: 21 June 2007
Appl. Phys. Lett. 90, 253113 (2007); https://doi.org/10.1063/1.2749870
more...View Affiliations
View Contributors
  • Hyungbin Son
  • Georgii G. Samsonidze
  • Jing Kong
  • Yingying Zhang
  • Xiaojie Duan
  • Jin Zhang
  • Zhongfan Liu
  • Mildred S. Dresselhaus
Axial strain is introduced into individual single wall carbon nanotubes (SWCNTs) suspended from a trench-containing SiSiO2 substrate by employing the van der Waals interaction between the SWCNT and the substrate. Resonance Raman spectroscopy is used to characterize the strain, and up to 3% axial strain is observed. It is also found that a significant friction between the SWCNT and the substrate, on the order of 10pNnm, governs the localization and propagation of the strain in the SWCNTs sitting on the substrate. This method can be applied to introduce strain into materials sitting on a substrate, such as a graphene sheet.
H.S. and J.K. acknowledge the support of the Intel Higher Education Program and the MSD Focus Center, one of five research centers funded under the Focus Center Research Program and a Semiconductor Corporation program. G.G.S. and M.S.D. acknowledge the support from NSF under Grant No. DMR04-05538. Y.Z., X.D., J.Z. and Z.L. acknowledge the support from NSFC (90206023) and MOST (2001CB6105). This work was carried out using the Raman facility in the Spectroscopy Laboratory supported by NSF CHE 0111370 and by NIH RR02594 grants.
  1. 1. P. L. McEuen, Phys. World 13, 31 (2000). Google ScholarCrossref
  2. 2. L. Yang and J. Han, Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.85.154 85, 154 (2000). Google ScholarCrossref
  3. 3. R. Hyed, A. Charlier, and E. McRae, Phys. Rev. B https://doi.org/10.1103/PhysRevB.55.6820 55, 6820 (1997). Google ScholarCrossref
  4. 4. E. D. Minot, Y. Yaish, V. Sazonova, J.-Y. Park, M. Brink, and P. L. McEuen, Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.90.156401 90, 156401 (2003). Google ScholarCrossref
  5. 5. S. B. Cronin, A. K. Swan, M. S. Ünlü, B. B. Goldberg, M. S. Dresselhaus, and M. Tinkham, Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.93.167401 93, 167401 (2004). Google ScholarCrossref
  6. 6. T. Hertel, R. E. Walkup, and P. Avouris, Phys. Rev. B https://doi.org/10.1103/PhysRevB.58.13870 58, 13870 (1998). Google ScholarCrossref
  7. 7. J. Israelachvili, Intermolecular and Surface Forces (Academic, London, 1994). Google Scholar
  8. 8. L. X. Zheng, M. J. O’Connel, S. K. Doorn, X. Z. Liao, Y. H. Zhao, E. A. Akhadov, M. A. Hoffbauer, B. J. Roop, Q. X. Jia, R. C. Dye, D. E. Peterson, S. M. Huang, J. Liu, and Y. T. Zhu, Nat. Mater. https://doi.org/10.1038/nmat1216 3, 673 (2004). Google ScholarCrossref, ISI
  9. 9. For the SWNT in Fig. 3, we found two radial breathing mode (RBM) peaks at 128 and 173cm1. In the plot of the RBM peak frequencies vs resonant transition energies based on the extended tight binding model (Ref. 17), RBM peaks at 128 and 173cm1 correspond to semiconducting and metallic SWCNTs, respectively. We conclude that this is a bundle of a semiconducting SWCNT and a metallic SWCNT. The broad peak at 1540cm1, which shows a Breit-Wigner-Fano line shape, corresponds to the metallic SWCNT in the bundle (Ref. 18). We also see changes in the Raman intensity along the length of the SWCNTs [Fig. 3(c)]. This is expected due to the change in the electronic transition energies when the SWCNT is under strain (Refs. 2 and 3). Google Scholar
  10. 10.The typical full width at half maximum linewidth of the G band is about 10cm1 and the typical peak accuracy of the G band is about ±1cm1.
  11. 11. A. Jorio, M. A. Pimenta, A. G. Souza Filho, Ge. G. Samsonidze, A. K. Swan, M. S. Ünlü, B. B. Goldberg, R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.90.107403 90, 107403 (2004). Google ScholarCrossref
  12. 12. J. P. Lu, Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.79.1297 79, 1297 (1997). Google ScholarCrossref
  13. 13. Y. Zhao, C. C. Ma, G. Chen, and Q. Jiang, Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.91.175504 91, 175504 (2004). Google ScholarCrossref
  14. 14. J. Cumings and A. Zettl, Science https://doi.org/10.1126/science.289.5479.602 289, 602 (2000). Google ScholarCrossref
  15. 15. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature (London) https://doi.org/10.1038/nature04233 438, 197 (2005). Google ScholarCrossref, ISI
  16. 16. Y. Zhang, Y. W. Tan, H. L. Stormer, and Philip Kim, Nature (London) https://doi.org/10.1038/nature04235 438, 201 (2005). Google ScholarCrossref, ISI
  17. 17. Ge. G. Samsonidze, R. Saito, N. Kobayashi, A. Grüneis, J. Jiang, A. Jorio, S. G. Chou, G. Dresselhaus, and M. S. Dresselhaus, Appl. Phys. Lett. https://doi.org/10.1063/1.1829160 85, 5703 (2004). Google ScholarScitation, ISI
  18. 18. H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba, Synth. Met. https://doi.org/10.1016/S0379-6779(98)00278-1 103, 2555 (1999). Google ScholarCrossref
  1. © 2007 American Institute of Physics.