No Access Submitted: 09 February 2006 Accepted: 27 June 2006 Published Online: 15 August 2006
Appl. Phys. Lett. 89, 071501 (2006); https://doi.org/10.1063/1.2336617
more...View Affiliations
Silicon single crystal surface modification by the action of nitrogen quasistationary compression plasma flow generated by a magnetoplasma compressor is studied. It has been found that highly oriented silicon periodic cylindrical shape structures are produced during a single pulse surface treatment. The periodical structure formation can be related to the driven capillary waves quenched during fast cooling and resolidification phase of the plasma flow interaction with silicon surface. These waves are induced on the liquid silicon surface due to the compression plasma flow intrinsic oscillations.
The authors are grateful to M. Matić, D. Randjelović, V. Rakić, and I. Videnović for their help in SEM and AFM analyses. This work is financially supported by the Ministry of Science and Environment Protection of the Republic of Serbia under Project No. 141043.
  1. 1. R. Gago, L. Vazquez, R. Cuerno, M. Varela, C. Ballesteros, and J. M. Albella, Appl. Phys. Lett. https://doi.org/10.1063/1.1372358 78, 3316 (2001). Google ScholarScitation, ISI
  2. 2. S. Habenicht, K. P. Lieb, J. Koch, and A. D. Wieck, Phys. Rev. B https://doi.org/10.1103/PhysRevB.65.115327 65, 115327 (2002). Google ScholarCrossref
  3. 3. U. Valbusa, C. Boragno, and F. B. de Mongeot, J. Phys.: Condens. Matter https://doi.org/10.1088/0953-8984/14/35/301 14, 8153 (2002). Google ScholarCrossref
  4. 4. M. S. Trtica and B. M. Gakovic, Appl. Surf. Sci. 205, 336 (2003). Google ScholarCrossref
  5. 5. J. F. Young, J. E. Sipe, and H. M. van Driel, Phys. Rev. B https://doi.org/10.1103/PhysRevB.30.2001 30, 2001 (1984). Google ScholarCrossref
  6. 6. V. N. Tokarev and V. I. Konov, J. Appl. Phys. https://doi.org/10.1063/1.357752 76, 800 (1994). Google ScholarScitation
  7. 7. L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon, New York, 1987), p. 341. Google Scholar
  8. 8. K. Sakai, K. Tachibana, S. Mitani, and K. Takagi, J. Colloid Interface Sci. https://doi.org/10.1016/S0021-9797(03)00448-X 264, 446 (2003). Google ScholarCrossref
  9. 9. B. Liu, C. Liu, D. Cheng, R. He, and S. Z. Yang, Thin Solid Films 390, 149 (2001). Google ScholarCrossref
  10. 10. J. Piekoszewski, Z. Werner, J. Langner, and M. Janik-Czachor, Surf. Coat. Technol. 93, 258 (1997). Google ScholarCrossref
  11. 11. H. Kaku, S. Higashi, H. Taniguchi, H. Murakami, and S. Miyazaki, Appl. Surf. Sci. 244, 8 (2005). Google ScholarCrossref
  12. 12. J. Purić, I. P. Dojčinović, V. M. Astashynski, M. M. Kuraica, and B. M. Obradović, Plasma Sources Sci. Technol. 13, 74 (2004). Google ScholarCrossref
  13. 13. A. I. Morozov, Sov. J. Plasma Phys. 16, 69 (1990). Google Scholar
  14. 14. J. Purić, V. M. Astashynski, I. P. Dojčinović, and M. M. Kuraica, Vacuum 73, 561 (2004). Google ScholarCrossref
  15. 15. V. V. Uglov, V. M. Anishchik, V. V. Astashynski, V. M. Astashynski, S. I. Ananin, V. V. Askerko, E. A. Kostyukevich, A. M. Kuz’mitski, N. T. Kvasov, and A. L. Danilyuk, Surf. Coat. Technol. 158/159, 273 (2002). Google ScholarCrossref
  16. 16. V. V. Uglov, V. M. Anishchik, V. V. Astashynski, V. M. Astashynski, S. I. Ananin, V. V. Askerko, E. A. Kostyukevich, A. M. Kuzmitski, N. T. Kvasov, and A. L. Danilyuk, JETP Lett. https://doi.org/10.1134/1.1413553 74, 213 (2001). Google ScholarCrossref
  17. 17. W. K. Rhim and K. Ohsaka, J. Cryst. Growth https://doi.org/10.1016/S0022-0248(99)00437-6 208, 313 (2000). Google ScholarCrossref
  18. 18. T. Y. Choi and C. P. Grigoropoulos, J. Appl. Phys. https://doi.org/10.1063/1.1510565 92, 4918 (2002). Google ScholarScitation
  1. © 2006 American Institute of Physics.