No Access Submitted: 25 July 2005 Accepted: 06 July 2006 Published Online: 07 August 2006
Appl. Phys. Lett. 89, 062901 (2006);
more...View Affiliations
View Contributors
  • M. Bazzan
  • N. Argiolas
  • C. Sada
  • E. Cattaruzza
Periodically poled lithium niobate crystals are expected to have ferroelectric domain boundaries parallel to the direction of the spontaneous polarization. The authors report, however, that this is not the case for periodic structures grown by the off-center Czochralski technique. By exploiting the high resolution x-ray diffraction technique in reciprocal space mapping mode, the authors demonstrate that the angle between the domain border and the spontaneous polarization directions is different from zero, reaching a value as high as 5°.
This work has been partially supported by the MIUR project FIRB (RBNE01KZ94F). The authors kindly acknowledge M. Servidori at the CNR-IMM Institute for fine discussions.
  1. 1. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, J. Opt. Soc. Am. B 12, 2012 (1995). Google ScholarCrossref
  2. 2. R. G. Batchko, V. Y. Shur, M. M. Fejer, and R. L. Byer, Appl. Phys. Lett. 75, 1675 (1999). Google ScholarScitation
  3. 3. N. B. Ming, J. F. Hong, and D. Feng, J. Mater. Sci. 17, 1663 (1982). Google ScholarCrossref
  4. 4. L. E. Myers, in Proceedings of the 52nd Scottish Universities Summer School in Physics, St. Andrews, 1998, edited by D. Finlayson and B. Sinclair (IOP, Bristol, 1999). Google Scholar
  5. 5. I. I. Naumova, N. F. Evlanova, O. A. Gliko, and S. V. Larishchev, J. Cryst. Growth 181, 102 (1997). Google ScholarCrossref
  6. 6. D. Callejo, V. Bermudez, and E. Dieguez, J. Phys.: Condens. Matter 13, 1337 (2001). Google ScholarCrossref
  7. 7. J. Capmany, E. Montoya, V. Bermudez, D. Callejo, E. Dieguez, and L. E. Baus, Appl. Phys. Lett. 76, 1374 (2000). Google ScholarScitation
  8. 8. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992). Google ScholarCrossref
  9. 9. Z. W. Hu, P. A. Thomas, and J. Webjörn, J. Appl. Crystallogr. 29, 279 (1996). Google ScholarCrossref
  10. 10. M. Drakopulos, Z. W. Hu, S. Kuznetsov, A. Snigrev, I. Snigreva, and P. A. Thomas, J. Phys. D 32, A160 (1999). Google ScholarCrossref
  11. 11. S. Ashihara, T. Shimura, and K. Kuroda, J. Opt. Soc. Am. B 20, 853 (2003). Google ScholarCrossref
  12. 12. C. Sada, N. Argiolas, and M. Bazzan, Appl. Phys. Lett. 79, 2163 (2001). Google ScholarScitation
  13. 13. N. Argiolas, M. Bazzan, A. Bernardi, E. Cattaruzza, P. Mazzoldi, P. Schiavuta, C. Sada, and U. Hangen, Mater. Sci. Eng., B 118, 150 (2005). Google ScholarCrossref
  14. 14. Z. W. Hu, P. A. Thomas, and J. Webjörn, J. Phys. D 28, A189 (1995); Google ScholarCrossref
    A. Boulle, O. Masson, R. Guinebretière, A. Lecomte, and A. Dauger, J. Appl. Crystallogr. 35, 606 (2002). , Google ScholarCrossref
  15. 15. M. Bazzan, N. Argiolas, A. Bernardi, P. Mazzoldi, and C. Sada, Mater. Charact. 51, 177 (2003). Google ScholarCrossref
  16. 16. V. Holý, U. Pietsch, and T. Baumbach, High Resolution X-Ray Scattering from Thin Films and Multilayers (Springer, Berlin, 1999), p. 28. Google Scholar
  17. 17. Q. Shen and S. Kycia, Phys. Rev. B 55, 15791 (1997). Google ScholarCrossref
  18. 18. T. Baumbach and D. Lübbert, J. Phys. D 32, 726 (1999). Google ScholarCrossref
  19. 19. V. Holý, A. A. Darhuber, G. Bauer, P. D. Wang, Y. P. Song, C. M. Sotomayor Torres, and M. C. Holland, Phys. Rev. B 52, 8348 (1995). Google ScholarCrossref
  1. © 2006 American Institute of Physics.