No Access Submitted: 25 July 2005 Accepted: 06 July 2006 Published Online: 07 August 2006
Appl. Phys. Lett. 89, 062901 (2006); https://doi.org/10.1063/1.2266032
more...View Affiliations
View Contributors
  • M. Bazzan
  • N. Argiolas
  • C. Sada
  • E. Cattaruzza
Periodically poled lithium niobate crystals are expected to have ferroelectric domain boundaries parallel to the direction of the spontaneous polarization. The authors report, however, that this is not the case for periodic structures grown by the off-center Czochralski technique. By exploiting the high resolution x-ray diffraction technique in reciprocal space mapping mode, the authors demonstrate that the angle between the domain border and the spontaneous polarization directions is different from zero, reaching a value as high as 5°.
This work has been partially supported by the MIUR project FIRB (RBNE01KZ94F). The authors kindly acknowledge M. Servidori at the CNR-IMM Institute for fine discussions.
  1. 1. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, J. Opt. Soc. Am. B 12, 2012 (1995). Google ScholarCrossref
  2. 2. R. G. Batchko, V. Y. Shur, M. M. Fejer, and R. L. Byer, Appl. Phys. Lett. 75, 1675 (1999). Google ScholarScitation
  3. 3. N. B. Ming, J. F. Hong, and D. Feng, J. Mater. Sci. https://doi.org/10.1007/BF00540793 17, 1663 (1982). Google ScholarCrossref
  4. 4. L. E. Myers, in Proceedings of the 52nd Scottish Universities Summer School in Physics, St. Andrews, 1998, edited by D. Finlayson and B. Sinclair (IOP, Bristol, 1999). Google Scholar
  5. 5. I. I. Naumova, N. F. Evlanova, O. A. Gliko, and S. V. Larishchev, J. Cryst. Growth 181, 102 (1997). Google ScholarCrossref
  6. 6. D. Callejo, V. Bermudez, and E. Dieguez, J. Phys.: Condens. Matter https://doi.org/10.1088/0953-8984/13/6/314 13, 1337 (2001). Google ScholarCrossref
  7. 7. J. Capmany, E. Montoya, V. Bermudez, D. Callejo, E. Dieguez, and L. E. Baus, Appl. Phys. Lett. https://doi.org/10.1063/1.126036 76, 1374 (2000). Google ScholarScitation
  8. 8. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. https://doi.org/10.1109/3.161322 28, 2631 (1992). Google ScholarCrossref
  9. 9. Z. W. Hu, P. A. Thomas, and J. Webjörn, J. Appl. Crystallogr. https://doi.org/10.1107/S0021889896000283 29, 279 (1996). Google ScholarCrossref
  10. 10. M. Drakopulos, Z. W. Hu, S. Kuznetsov, A. Snigrev, I. Snigreva, and P. A. Thomas, J. Phys. D https://doi.org/10.1088/0022-3727/32/10A/332 32, A160 (1999). Google ScholarCrossref
  11. 11. S. Ashihara, T. Shimura, and K. Kuroda, J. Opt. Soc. Am. B 20, 853 (2003). Google ScholarCrossref
  12. 12. C. Sada, N. Argiolas, and M. Bazzan, Appl. Phys. Lett. https://doi.org/10.1063/1.1408603 79, 2163 (2001). Google ScholarScitation
  13. 13. N. Argiolas, M. Bazzan, A. Bernardi, E. Cattaruzza, P. Mazzoldi, P. Schiavuta, C. Sada, and U. Hangen, Mater. Sci. Eng., B 118, 150 (2005). Google ScholarCrossref
  14. 14. Z. W. Hu, P. A. Thomas, and J. Webjörn, J. Phys. D https://doi.org/10.1088/0022-3727/28/4A/037 28, A189 (1995); Google ScholarCrossref
    A. Boulle, O. Masson, R. Guinebretière, A. Lecomte, and A. Dauger, J. Appl. Crystallogr. https://doi.org/10.1107/S0021889802011470 35, 606 (2002). , Google ScholarCrossref
  15. 15. M. Bazzan, N. Argiolas, A. Bernardi, P. Mazzoldi, and C. Sada, Mater. Charact. 51, 177 (2003). Google ScholarCrossref
  16. 16. V. Holý, U. Pietsch, and T. Baumbach, High Resolution X-Ray Scattering from Thin Films and Multilayers (Springer, Berlin, 1999), p. 28. Google Scholar
  17. 17. Q. Shen and S. Kycia, Phys. Rev. B https://doi.org/10.1103/PhysRevB.55.15791 55, 15791 (1997). Google ScholarCrossref
  18. 18. T. Baumbach and D. Lübbert, J. Phys. D https://doi.org/10.1088/0022-3727/32/6/020 32, 726 (1999). Google ScholarCrossref
  19. 19. V. Holý, A. A. Darhuber, G. Bauer, P. D. Wang, Y. P. Song, C. M. Sotomayor Torres, and M. C. Holland, Phys. Rev. B https://doi.org/10.1103/PhysRevB.52.8348 52, 8348 (1995). Google ScholarCrossref
  1. © 2006 American Institute of Physics.