No Access Submitted: 10 January 2006 Accepted: 13 April 2006 Published Online: 30 May 2006
Appl. Phys. Lett. 88, 222504 (2006);
more...View Affiliations
View Contributors
  • K. Yakushiji
  • K. Saito
  • S. Mitani
  • K. Takanashi
  • Y. K. Takahashi
  • K. Hono
Current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) of the multilayer thin film using a full-Heusler Co2MnSi (CMS) phase as ferromagnetic electrodes has been investigated. A multilayer of Cr buffer (10nm)CMS (50nm)Cr spacer (3nm)CMS (10nm)Cr cap (3nm) was grown on a MgO(100) substrate. The 50nm thick CMS layer which was deposited on the Cr buffer at 573K was epitaxially grown and had an L21 structure. The resistance change-area product (ΔRA) at room temperature was 19mΩμm2, which is one order of magnitude larger than those in previously reported trilayer systems, resulting in the MR ratio of 2.4%. A possible origin of the enhanced ΔRA is considered to be the large spin polarization in a high-quality L21 CMS film.
The authors thank Y. Murakami, M. Ishiguro, and T. Ashino for the film composition analysis. The sample preparation was performed at Advanced Research Center of Metallic Glasses, IMR, Tohoku University. This work was in part supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research (B), 17360346, 2005.
  1. 1. Y. Miura, K. Nagao, and M. Shirai, Phys. Rev. B 69, 144413 (2004). Google ScholarCrossref, ISI
  2. 2. I. Galanakis, J. Phys.: Condens. Matter 14, 6329 (2002). Google ScholarCrossref, ISI
  3. 3. I. Galanakis, J. Phys.: Condens. Matter 16, 3089 (2004). Google ScholarCrossref, ISI
  4. 4. S. Fujii, S. Sugimura, S. Ishida, and S. Asano, J. Phys.: Condens. Matter 2, 8583 (1990). Google ScholarCrossref, ISI
  5. 5. I. Galanakis, P. H. Dederiches, and N. Papanikolaou, Phys. Rev. B 66, 174429 (2002). Google ScholarCrossref, ISI
  6. 6. S. Picozzi, A. Continenza, and A. J. Freeman, Phys. Rev. B 66, 094421 (2002). Google ScholarCrossref, ISI
  7. 7. S. J. Hashemifar, P. Kratzer, and M. Scheffler, Phys. Rev. Lett. 94, 096402 (2005). Google ScholarCrossref, ISI
  8. 8. P. J. Brown, K. U. Neumann, P. J. Webster, and K. R. A. Ziebeck, J. Phys.: Condens. Matter 12, 1827 (2000). Google ScholarCrossref, ISI
  9. 9. K. Inomata, S. Okamura, R. Goto, and N. Tezuka, Jpn. J. Appl. Phys., Part 2 42, L419 (2003). Google ScholarCrossref, ISI
  10. 10. S. Kämmerer, A. Thomas, A. Hutten, and G. Reiss, Appl. Phys. Lett. 85, 79 (2004). Google ScholarScitation, ISI
  11. 11. H. Kubota, J. Nakata, M. Oogane, Y. Ando, A. Sakuma, and T. Miyazaki, Jpn. J. Appl. Phys., Part 2, L984 (2004). Google ScholarCrossref, ISI
  12. 12. J. Schmalhorst, S. Kämmerer, M. Sacher, G. Reiss, and A. Hütten, and A. Scholl, Phys. Rev. B 70, 024426 (2004). Google ScholarCrossref, ISI
  13. 13. T. Marukame, T. Kasahara, K. Matsuda, T. Uehara, and M. Yamamoto, Jpn. J. Appl. Phys., Part 2, L521 (2005). Google ScholarCrossref, ISI
  14. 14. Y. Sakuraba, J. Nakata, M. Oogane, H. Kubota, Y. Ando, A. Sakuma and T. Miyazaki, Jpn. J. Appl. Phys., Part 2 44, L1100 (2005). Google ScholarCrossref, ISI
  15. 15. J. A. Caballero, A. C. Reilly, and Y. Hao, J. Magn. Magn. Mater. 198–199, 55 (1999). Google ScholarCrossref, ISI
  16. 16. H. Hoshiya and K. Hoshino, J. Appl. Phys. 95, 6774 (2004). Google ScholarScitation
  17. 17. M. Saito, N. Hasegawa, Y. Ide, T. Yamashita, Y. Hayakawa, Y. Nishiyama, M. Ishizone, S. Yanagi, K. Honda, N. Ishibashi, D. Aoki, H. Kawanami, K. Nishimura, J. Takahashi, and A. Takahashi, Digest of the Intermag Conference Asia, 2005, Abstract FB02. Google Scholar
  1. © 2006 American Institute of Physics.