No Access
Published Online: 30 January 2006
Accepted: November 2005
J. Chem. Phys. 124, 044109 (2006); https://doi.org/10.1063/1.2159468
more...View Affiliations
The tau-leaping method of simulating the stochastic time evolution of a well-stirred chemically reacting system uses a Poisson approximation to take time steps that leap over many reaction events. Theory implies that tau leaping should be accurate so long as no propensity function changes its value “significantly” during any time step τ. Presented here is an improved procedure for estimating the largest value for τ that is consistent with this condition. This new τ-selection procedure is more accurate, easier to code, and faster to execute than the currently used procedure. The speedup in execution will be especially pronounced in systems that have many reaction channels.
This work was supported in part by the California Institute of Technology under DARPA Award No. F30602-01-2-0558, by the U.S. Department of Energy under DOE Award No. DE-FG02-04ER25621, by the National Science Foundation under NSF Award Nos. CCF-0326576 and ACI00-86061, by the Institute for Collaborative Biotechnologies through Grant No. DAAD19-03-D-0004 from the U.S. Army Research Office, and by the Molecular Sciences Institute under Contract No. 244725 with Sandia National Laboratories and the Department of Energy’s “Genomes to Life” program.
  1. 1. H. H. McAdams and A. Arkin, Proc. Natl. Acad. Sci. U.S.A. https://doi.org/10.1073/pnas.94.3.814 94, 814 (1997). Google ScholarCrossref
  2. 2. A. Arkin, J. Ross, and H. H. McAdams, Genetics 149, 1633 (1998). Google Scholar
  3. 3. N. Fedoroff and W. Fontana, Science https://doi.org/10.1126/science.1075988 297, 1129 (2002). Google ScholarCrossref
  4. 4. D. Gillespie, J. Comput. Phys. https://doi.org/10.1016/0021-9991(76)90041-3 22, 403 (1976). Google ScholarCrossref
  5. 5. D. Gillespie, J. Phys. Chem. https://doi.org/10.1021/j100540a008 81, 2340 (1977). Google ScholarCrossref
  6. 6. M. Gibson and J. Bruck, J. Phys. Chem. A https://doi.org/10.1021/jp993732q 104, 1876 (2000). Google ScholarCrossref
  7. 7. Y. Cao, H. Li, and L. Petzold, J. Chem. Phys. https://doi.org/10.1063/1.1778376 121, 4059 (2004). Google ScholarScitation, ISI
  8. 8. D. Gillespie, J. Chem. Phys. https://doi.org/10.1063/1.1378322 115, 1716 (2001). Google ScholarScitation, ISI
  9. 9. D. Gillespie, in Handbook of Materials Modeling, edited by S. Yip (Springer, Dordrecht, 2005), Sec. 5.11, pp. 1735–1752. Google ScholarCrossref
  10. 10. D. Gillespie and L. Petzold, J. Chem. Phys. https://doi.org/10.1063/1.1613254 119, 8229 (2003). Google ScholarScitation
  11. 11. M. Rathinam, L. Petzold, Y. Cao, and D. Gillespie, J. Chem. Phys. https://doi.org/10.1063/1.1627296 119, 12784 (2003). Google ScholarScitation, ISI
  12. 12. T. Tian and K. Burrage, J. Chem. Phys. https://doi.org/10.1063/1.1810475 121, 10356 (2004). Google ScholarScitation
  13. 13. A. Chatterjee, D. G. Vlachos, and M. A. Katsoulakis, J. Chem. Phys. https://doi.org/10.1063/1.1833357 122, 024112 (2005). Google ScholarScitation, ISI
  14. 14. Y. Cao, D. Gillespie, and L. Petzold, J. Chem. Phys. https://doi.org/10.1063/1.1992473 123, 054104 (2005). Google ScholarScitation
  15. 15. A. M. Kierzek, Bioinformatics https://doi.org/10.1093/bioinformatics/18.3.470 18, 470 (2002). Google ScholarCrossref
  16. 16. D. T. Gillespie, Markov Processes: An Introduction for Physical Scientists (Academic, New York, 1992). Google ScholarCrossref
  17. 17. Y. Cao and L. Petzold, J. Comput. Phys. 212, 6 (2006). Google ScholarCrossref
  18. © 2006 American Institute of Physics.