No Access Submitted: 15 June 2005 Accepted: 21 June 2005 Published Online: 19 August 2005
J. Chem. Phys. 123, 074901 (2005); https://doi.org/10.1063/1.2000237
more...View Affiliations
View Contributors
  • R. L. C. Vink
  • S. Wolfsheimer
  • T. Schilling
Coexistence between the isotropic and the nematic phase in suspensions of rods is studied using grand canonical Monte Carlo simulations with a bias on the nematic order parameter. The biasing scheme makes it possible to estimate the interfacial tension γIN in systems of hard and soft rods. For hard rods with LD=15, we obtain γIN1.4kBTL2, with L the rod length, D the rod diameter, T the temperature, and kB the Boltzmann constant. This estimate is in good agreement with theoretical predictions, and the order of magnitude is consistent with experiments.
We thank the Deutsche Forschungsgemeinschaft (DFG) for support (TR6/A5 and TR6/D5) and K. Binder, M. Müller, P. Virnau, P. van der Schoot, R. van Roij, and M. Dijkstra for a careful reading of the manuscript and/or helpful suggestions. One of the authors (T.S.) is supported by the Emmy Noether program of the DFG. Allocation of computer time on the JUMP at the Forschungszentrum Jülich is gratefully acknowledged. T. S. also acknowledges financial support by the MWFZ of Rheinland Pfalz.
  1. 1. W. Chen and D. G. Gray, Langmuir 18, 663 (2002). Google Scholar
  2. 2. A. J. McDonald, M. P. Allen, and F. Schmid, Phys. Rev. E https://doi.org/10.1103/PhysRevE.63.010701 63, 010701(R) (2000). Google ScholarCrossref
  3. 3. N. Akino, F. Schmid, and M. P. Allen, Phys. Rev. E https://doi.org/10.1103/PhysRevE.63.041706 63, 041706 (2001). Google ScholarCrossref, ISI
  4. 4. R. L. C. Vink and T. Schilling, Phys. Rev. E https://doi.org/10.1103/PhysRevE.71.051716 71, 051716 (2005). Google ScholarCrossref
  5. 5. D. J. Cleaver and M. P. Allen, Mol. Phys. 80, 253 (1993). Google ScholarCrossref
  6. 6. Z. Y. Chen and J. Noolandi, Phys. Rev. A https://doi.org/10.1103/PhysRevA.45.2389 45, 2389 (1992). Google ScholarCrossref
  7. 7. D. L. Koch and O. G. Harlen, Macromolecules https://doi.org/10.1021/ma980779l 32, 219 (1999). Google ScholarCrossref
  8. 8. P. van der Schoot, J. Phys. Chem. B https://doi.org/10.1021/jp9918914 103, 8804 (1999). Google ScholarCrossref
  9. 9. E. Velasco, L. Mederos, and D. E. Sullivan, Phys. Rev. E https://doi.org/10.1103/PhysRevE.66.021708 66, 021708 (2002). Google ScholarCrossref
  10. 10. M. P. Allen, Chem. Phys. Lett. https://doi.org/10.1016/S0009-2614(00)01207-0 331, 513 (2000). Google ScholarCrossref
  11. 11. K. Shundyak and R. van Roij, J. Phys.: Condens. Matter https://doi.org/10.1088/0953-8984/13/21/310 13, 4789 (2001). Google ScholarCrossref
  12. 12. L. Onsager, Ann. N.Y. Acad. Sci. https://doi.org/10.1103/PhysRev.62.558 51, 627 (1949). Google ScholarCrossref
  13. 13. P. Bolhuis and D. Frenkel, J. Chem. Phys. https://doi.org/10.1063/1.473404 106, 666 (1997). Google ScholarScitation, ISI
  14. 14. M. Dijkstra, R. van Roij, and R. Evans, Phys. Rev. E https://doi.org/10.1103/PhysRevE.63.051703 63, 051703 (2001). Google ScholarCrossref, ISI
  15. 15. M. S. Al-Barwani and M. P. Allen, Phys. Rev. E https://doi.org/10.1103/PhysRevE.62.6706 62, 6706 (2000). Google ScholarCrossref
  16. 16. J. Potoff and A. Panagiotopoulos, J. Chem. Phys. https://doi.org/10.1063/1.481204 112, 6411 (2000). Google ScholarScitation, ISI
  17. 17. W. Góźdź, J. Chem. Phys. https://doi.org/10.1063/1.1589746 119, 3309 (2003). Google ScholarScitation, ISI
  18. 18. P. Virnau, M. Müller, L. G. MacDowell, and K. Binder, J. Chem. Phys. https://doi.org/10.1063/1.1765103 121, 2169 (2004). Google ScholarScitation
  19. 19. M. Müller and L. G. MacDowell, Macromolecules https://doi.org/10.1021/ma991796t 33, 3902 (2000). Google ScholarCrossref
  20. 20. R. L. C. Vink and J. Horbach, J. Chem. Phys. https://doi.org/10.1063/1.1773771 121, 3253 (2004). Google ScholarScitation, ISI
  21. 21. N. B. Wilding, Am. J. Phys. https://doi.org/10.1119/1.1399044 69, 1147 (2001). Google ScholarCrossref, ISI
  22. 22. S. R. Williams and A. P. Philipse, Phys. Rev. E https://doi.org/10.1103/PhysRevE.67.051301 67, 051301 (2003). Google ScholarCrossref, ISI
  23. 23. K. Binder, Phys. Rev. A https://doi.org/10.1103/PhysRevA.25.1699 25, 1699 (1982). Google ScholarCrossref, ISI
  24. 24. D. P. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge University Press, Cambridge, 2000). Google Scholar
  25. 25. D. Frenkel and B. Smit, Understanding Molecular Simulation (Academic, San Diego, 2001). Google Scholar
  26. 26. P. Virnau and M. Müller, J. Chem. Phys. https://doi.org/10.1063/1.1739216 120, 10925 (2004). Google ScholarScitation, ISI
  27. 27. G. M. Torrie and J. P. Valleau, J. Comput. Phys. https://doi.org/10.1016/0021-9991(77)90121-8 23, 187 (1977). Google ScholarCrossref, ISI
  28. 28. B. Berg and T. Neuhaus, Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.68.9 68, 9 (1992). Google ScholarCrossref, ISI
  29. 29. F. Wang and D. P. Landau, Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.86.2050 86, 2050 (2001). Google ScholarCrossref, ISI
  30. 30. Q. Yan and J. J. de Pablo, J. Chem. Phys. https://doi.org/10.1063/1.481905 113, 1276 (2000). Google ScholarScitation, ISI
  31. 31. B. Widom, J. Chem. Phys. 39, 2802 (1963). Google ScholarScitation, ISI
  32. 32. B. Grossmann and M. L. Laursen, Nucl. Phys. B https://doi.org/10.1016/0550-3213(93)90383-Z 408, 637 (1993). Google ScholarCrossref
  33. 33. J. S. Rowlinson and B. Widom, Molecular Theory of Capillarity (Clarendon, Oxford, 1982). Google Scholar
  34. 34. M. E. J. Newman and G. T. Barkema, Monte Carlo Methods in Statistical Physics (Clarendon, Oxford, 1999). Google Scholar
  35. 35. K. Shundyak and R. van Roij, Phys. Rev. E https://doi.org/10.1103/PhysRevE.68.061703 68, 061703 (2003). Google ScholarCrossref
  36. 36. M. P. Allen, J. Chem. Phys. https://doi.org/10.1063/1.481112 112, 5447 (2000b). Google ScholarScitation
  37. 37. K. Binder and M. Müller, Int. J. Mod. Phys. C https://doi.org/10.1142/S012918310000095X 11, 1093 (2000). Google ScholarCrossref
  38. 38. H. L. Tepper and W. J. Briels, J. Chem. Phys. https://doi.org/10.1063/1.1452110 116, 5186 (2002). Google ScholarScitation
  39. 39. P. Virnau, L. G. MacDowell, M. Müller, and K. Binder, in High Performance Computing in Science and Engineering, edited by S. Wagner, W. Hanke, A. Bode, and F. Durst (Springer, Berlin, 2004), p. 125. Google Scholar
  40. 40. L. G. MacDowell, P. Virnau, M. Müller, and K. Binder, J. Chem. Phys. https://doi.org/10.1063/1.1645784 120, 5293 (2004). Google ScholarScitation, ISI
  41. 41. K. K. Mon, Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.60.2749 60, 2749 (1988). Google ScholarCrossref
  42. 42. B. A. Berg, U. Hansmann, and T. Neuhaus, Z. Phys. B: Condens. Matter 90, 229 (1993). Google ScholarCrossref
  43. 43. J. E. Hunter III and W. P. Reinhardt, J. Chem. Phys. https://doi.org/10.1063/1.470121 103, 8627 (1995). Google ScholarScitation, ISI
  44. 44. W. E. McMullen, Phys. Rev. A https://doi.org/10.1103/PhysRevA.38.6384 38, 6384 (1988). Google ScholarCrossref
  45. 45. A. M. Somoza and P. Tarazona, J. Chem. Phys. https://doi.org/10.1063/1.457487 91, 517 (1989). Google ScholarScitation
  46. 46. P. G. Bolhuis, D. Chandler, C. Dellago, and P. L. Geissler, Annu. Rev. Phys. Chem. https://doi.org/10.1146/annurev.physchem.53.082301.113146 53, 291 (2002). Google ScholarCrossref, ISI
  1. © 2005 American Institute of Physics.