No Access Submitted: 24 November 2004 Accepted: 21 December 2004 Published Online: 11 March 2005
J. Chem. Phys. 122, 104311 (2005);
more...View Affiliations
View Contributors
  • Anne B. McCoy
  • Juliane L. Fry
  • Joseph S. Francisco
  • Andrew K. Mollner
  • Mitchio Okumura
A joint theoretical and experimental investigation is undertaken to study the effects of OH-stretch/HOON torsion coupling and of quantum yield on the previously reported first overtone action spectrum of cis-cis HOONO (peroxynitrous acid). The minimum energy path along the HOON dihedral angle is computed at the coupled cluster singles and doubles with perturbative triples level with correlation consistent polarized quadruple ζ basis set, at the structure optimized using the triple ζ basis set (CCSD(T)/cc-pVQZ//CCSD(T)/cc-pVTZ). The two-dimensional ab initio potential energy and dipole moment surfaces for cis-cis HOONO are calculated as functions of the HOON torsion and OH bond length about the minimum energy path at the CCSD(T)/cc-pVTZ and QCISD/AUG-cc-pVTZ (QCISD—quadratic configuration interaction with single and double excitation and AUG-augmented with diffuse functions) level of theory/basis, respectively. The OH-stretch vibration depends strongly on the torsional angle, and the torsional potential possesses a broad shelf at 90°, the cis-perp conformation. The calculated electronic energies and dipoles are fit to simple functional forms and absorption spectra in the region of the OH fundamental and first overtone are calculated from these surfaces. While the experimental and calculated spectra of the OH fundamental band are in good agreement, significant differences in the intensity patterns are observed between the calculated absorption spectrum and the measured action spectrum in the 2νOH region. These differences are attributed to the fact that several of the experimentally accessible states do not have sufficient energy to dissociate to OH+NO2 and therefore are not detectable in an action spectrum. Scaling of the intensities of transitions to these states, assuming D0=82.0kJmol, is shown to produce a spectrum that is in good agreement with the measured action spectrum. Based on this agreement, we assign two of the features in the spectrum to Δn=0 transitions (where n is the HOON torsion quantum number) that are blue shifted relative to the origin band, while the large peak near 7000cm1 is assigned to a series of Δn=+1 transitions, with predominant contributions from torsionally excited states with substantial cis-perp character. The direct absorption spectrum of cis-cis HOONO (63006850cm1) is recorded by cavity ringdown spectroscopy in a discharge flow cell. A single band of HOONO is observed at 6370cm1 and is assigned as the origin of the first OH overtone of cis-cis HOONO. These results imply that the origin band is suppressed by over an order of magnitude in the action spectrum, due to a reduced quantum yield. The striking differences between absorption and action spectra are correctly predicted by the calculations.
This work was supported by the California Air Resources Board (Contract No. 03-333), the National Science Foundation (NSF Grant Nos. CHE-0200968 and ATM-0432377), and the National Aeronautics and Space Administration Upper Atmospheric Research Program (NASA Grant No. NGT-11657). Experiments were performed in the laboratory of Professor Paul O. Wennberg, and the authors gratefully acknowledge his support and interest. J.L.F. and A.K.M. acknowledge support of NSF Graduate Research Fellowships and a NASA Earth System Science Fellowship. The authors thank the NASA Jet Propulsion Laboratory Supercomputing Project for computer time. They thank Stanley P. Sander, John F. Stanton, Amit Sinha, and Marsha I. Lester for helpful discussions and for sharing unpublished results prior to publication.
  1. 1. S. A. Nizkorodov and P. O. Wennberg, J. Phys. Chem. A 106, 855 (2002). Google ScholarCrossref, ISI
  2. 2. B. D. Bean, A. K. Mollner, S. A. Nizkorodov, G. Nair, M. Okumura, S. P. Sander, K. A. Peterson, and J. S. Francisco, J. Phys. Chem. A 107, 6974 (2003). Google ScholarCrossref, ISI
  3. 3. H. Hippler, S. Nasterlack, and F. Striebel, Phys. Chem. Chem. Phys. 4, 2959 (2002). Google ScholarCrossref, ISI
  4. 4. N. M. Donahue, R. Mohrschladt, T. J. Dransfield, J. G. Anderson, and M. K. Dubey, J. Phys. Chem. A 105, 1515 (2001). Google ScholarCrossref, ISI
  5. 5. D. M. Golden, J. R. Barker, and L. L. Lohr, J. Phys. Chem. A 107, 11057 (2003). Google ScholarCrossref, ISI
  6. 6. J. L. Fry, S. A. Nizkorodov, M. Okumura, C. M. Roehl, J. S. Francisco, and P. O. Wennberg, J. Chem. Phys. 121, 1432 (2004). Google ScholarScitation, ISI
  7. 7. M. P. McGrath and F. S. Rowland, J. Phys. Chem. 98, 1061 (1994). Google ScholarCrossref
  8. 8. H. H. Tsai, T. P. Hamilton, J. H. M. Tsai, M. van derWoerd, J. G. Harrison, M. J. Jablonsky, J. S. Beckman, and W. H. Koppenol, J. Phys. Chem. 100, 15087 (1996). Google ScholarCrossref
  9. 9. K. N. Houk, K. R. Condroski, and W. A. Pryor, J. Am. Chem. Soc. 118, 13002 (1996). Google ScholarCrossref, ISI
  10. 10. R. D. Bach, M. N. Glukhovtsev, and C. Canepa, J. Am. Chem. Soc. 120, 775 (1998). Google ScholarCrossref
  11. 11. K. Doclo and U. Rothlisberger, Chem. Phys. Lett. 297, 205 (1998). Google ScholarCrossref
  12. 12. R. S. Zhu and M. C. Lin, J. Chem. Phys. 119, 10667 (2003). Google ScholarScitation, ISI
  13. 13. J. F. Stanton (private communication). Google Scholar
  14. 14. B. M. Cheng, J. W. Lee, and Y. P. Lee, J. Phys. Chem. 95, 2814 (1991). Google ScholarCrossref, ISI
  15. 15. W. J. Lo and Y. P. Lee, J. Chem. Phys. 101, 5494 (1994). Google ScholarScitation, ISI
  16. 16. I. B. Pollack, I. M. Konen, E. X. J. Li, and M. I. Lester, J. Chem. Phys. 119, 9981 (2003). Google ScholarScitation, ISI
  17. 17. J. Matthews, A. Sinha, and J. S. Francisco, J. Chem. Phys. 120, 10543 (2004). Google ScholarScitation, ISI
  18. 18. I. M. Konen, I. B. Pollack, E. X. J. Li, M. I. Lester, M. E. Varner, and J. F. Stanton, J. Chem. Phys.(to be published). Google Scholar
  19. 19. G. Purvis and R. Bartlett, J. Chem. Phys. 76, 1910 (1982). Google ScholarScitation, ISI
  20. 20. K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon, Chem. Phys. Lett. 157, 479 (1989). Google ScholarCrossref, ISI
  21. 21. J. D. Watts, J. Gauss, and R. J. Bartlett, J. Chem. Phys. 98, 8718 (1993). Google ScholarScitation, ISI
  22. 22. T. H. Dunning, J. Chem. Phys. 90, 1007 (1989). Google ScholarScitation, ISI
  23. 23. R. A. Kendall, T. H. Dunning, and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992). Google ScholarScitation, ISI
  24. 24. D. E. Woon and T. H. Dunning, J. Chem. Phys. 98, 1358 (1993). Google ScholarScitation, ISI
  25. 25. J. A. Pople, M. Head-Gordon, and K. Raghavachari, J. Chem. Phys. 87, 5968 (1987). Google ScholarScitation, ISI
  26. 26. M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 98, Revision A.9, 1998. Google Scholar
  27. 27. D. T. Colbert and W. H. Miller, J. Chem. Phys. 96, 1982 (1992). Google ScholarScitation, ISI
  28. 28. Z. Bacic and J. C. Light, Annu. Rev. Phys. Chem. 40, 469 (1989). Google ScholarCrossref
  29. 29. See EPAPS Document No. E-JCPSA6-122-009510 for parameters of the potential energy and dipole surfaces. A direct link to this document may be found in the online article's HTML reference section. The document may also be reached via the EPAPS homepage ( or from in the directory /epaps/. See the EPAPS homepage for more information. Google Scholar
  30. 30. J. M. Guilmot, M. Godefroid, and M. Herman, J. Mol. Spectrosc. 160, 387 (1993). Google ScholarCrossref
  31. 31. K. J. Feierabend, D. K. Havey, and V. Vaida, Spectrochim. Acta, Part A 60, 2775 (2004). Google ScholarCrossref
  1. © 2005 American Institute of Physics.