No Access Submitted: 24 November 2004 Accepted: 21 December 2004 Published Online: 11 March 2005
J. Chem. Phys. 122, 104311 (2005); https://doi.org/10.1063/1.1859273
more...View Affiliations
View Contributors
  • Anne B. McCoy
  • Juliane L. Fry
  • Joseph S. Francisco
  • Andrew K. Mollner
  • Mitchio Okumura
A joint theoretical and experimental investigation is undertaken to study the effects of OH-stretch/HOON torsion coupling and of quantum yield on the previously reported first overtone action spectrum of cis-cis HOONO (peroxynitrous acid). The minimum energy path along the HOON dihedral angle is computed at the coupled cluster singles and doubles with perturbative triples level with correlation consistent polarized quadruple ζ basis set, at the structure optimized using the triple ζ basis set (CCSD(T)/cc-pVQZ//CCSD(T)/cc-pVTZ). The two-dimensional ab initio potential energy and dipole moment surfaces for cis-cis HOONO are calculated as functions of the HOON torsion and OH bond length about the minimum energy path at the CCSD(T)/cc-pVTZ and QCISD/AUG-cc-pVTZ (QCISD—quadratic configuration interaction with single and double excitation and AUG-augmented with diffuse functions) level of theory/basis, respectively. The OH-stretch vibration depends strongly on the torsional angle, and the torsional potential possesses a broad shelf at 90°, the cis-perp conformation. The calculated electronic energies and dipoles are fit to simple functional forms and absorption spectra in the region of the OH fundamental and first overtone are calculated from these surfaces. While the experimental and calculated spectra of the OH fundamental band are in good agreement, significant differences in the intensity patterns are observed between the calculated absorption spectrum and the measured action spectrum in the 2νOH region. These differences are attributed to the fact that several of the experimentally accessible states do not have sufficient energy to dissociate to OH+NO2 and therefore are not detectable in an action spectrum. Scaling of the intensities of transitions to these states, assuming D0=82.0kJmol, is shown to produce a spectrum that is in good agreement with the measured action spectrum. Based on this agreement, we assign two of the features in the spectrum to Δn=0 transitions (where n is the HOON torsion quantum number) that are blue shifted relative to the origin band, while the large peak near 7000cm1 is assigned to a series of Δn=+1 transitions, with predominant contributions from torsionally excited states with substantial cis-perp character. The direct absorption spectrum of cis-cis HOONO (63006850cm1) is recorded by cavity ringdown spectroscopy in a discharge flow cell. A single band of HOONO is observed at 6370cm1 and is assigned as the origin of the first OH overtone of cis-cis HOONO. These results imply that the origin band is suppressed by over an order of magnitude in the action spectrum, due to a reduced quantum yield. The striking differences between absorption and action spectra are correctly predicted by the calculations.
This work was supported by the California Air Resources Board (Contract No. 03-333), the National Science Foundation (NSF Grant Nos. CHE-0200968 and ATM-0432377), and the National Aeronautics and Space Administration Upper Atmospheric Research Program (NASA Grant No. NGT-11657). Experiments were performed in the laboratory of Professor Paul O. Wennberg, and the authors gratefully acknowledge his support and interest. J.L.F. and A.K.M. acknowledge support of NSF Graduate Research Fellowships and a NASA Earth System Science Fellowship. The authors thank the NASA Jet Propulsion Laboratory Supercomputing Project for computer time. They thank Stanley P. Sander, John F. Stanton, Amit Sinha, and Marsha I. Lester for helpful discussions and for sharing unpublished results prior to publication.
  1. 1. S. A. Nizkorodov and P. O. Wennberg, J. Phys. Chem. A https://doi.org/10.1021/jp013598l 106, 855 (2002). Google ScholarCrossref, ISI
  2. 2. B. D. Bean, A. K. Mollner, S. A. Nizkorodov, G. Nair, M. Okumura, S. P. Sander, K. A. Peterson, and J. S. Francisco, J. Phys. Chem. A https://doi.org/10.1021/jp034407c 107, 6974 (2003). Google ScholarCrossref, ISI
  3. 3. H. Hippler, S. Nasterlack, and F. Striebel, Phys. Chem. Chem. Phys. https://doi.org/10.1039/b201932a 4, 2959 (2002). Google ScholarCrossref, ISI
  4. 4. N. M. Donahue, R. Mohrschladt, T. J. Dransfield, J. G. Anderson, and M. K. Dubey, J. Phys. Chem. A https://doi.org/10.1021/jp0035582 105, 1515 (2001). Google ScholarCrossref, ISI
  5. 5. D. M. Golden, J. R. Barker, and L. L. Lohr, J. Phys. Chem. A https://doi.org/10.1021/jp0353183 107, 11057 (2003). Google ScholarCrossref, ISI
  6. 6. J. L. Fry, S. A. Nizkorodov, M. Okumura, C. M. Roehl, J. S. Francisco, and P. O. Wennberg, J. Chem. Phys. https://doi.org/10.1063/1.1760714 121, 1432 (2004). Google ScholarScitation, ISI
  7. 7. M. P. McGrath and F. S. Rowland, J. Phys. Chem. 98, 1061 (1994). Google ScholarCrossref
  8. 8. H. H. Tsai, T. P. Hamilton, J. H. M. Tsai, M. van derWoerd, J. G. Harrison, M. J. Jablonsky, J. S. Beckman, and W. H. Koppenol, J. Phys. Chem. https://doi.org/10.1021/jp961091i 100, 15087 (1996). Google ScholarCrossref
  9. 9. K. N. Houk, K. R. Condroski, and W. A. Pryor, J. Am. Chem. Soc. https://doi.org/10.1021/ja9619521 118, 13002 (1996). Google ScholarCrossref, ISI
  10. 10. R. D. Bach, M. N. Glukhovtsev, and C. Canepa, J. Am. Chem. Soc. https://doi.org/10.1021/ja972518h 120, 775 (1998). Google ScholarCrossref
  11. 11. K. Doclo and U. Rothlisberger, Chem. Phys. Lett. https://doi.org/10.1016/S0009-2614(98)01102-6 297, 205 (1998). Google ScholarCrossref
  12. 12. R. S. Zhu and M. C. Lin, J. Chem. Phys. https://doi.org/10.1063/1.1619373 119, 10667 (2003). Google ScholarScitation, ISI
  13. 13. J. F. Stanton (private communication). Google Scholar
  14. 14. B. M. Cheng, J. W. Lee, and Y. P. Lee, J. Phys. Chem. 95, 2814 (1991). Google ScholarCrossref, ISI
  15. 15. W. J. Lo and Y. P. Lee, J. Chem. Phys. https://doi.org/10.1063/1.467338 101, 5494 (1994). Google ScholarScitation, ISI
  16. 16. I. B. Pollack, I. M. Konen, E. X. J. Li, and M. I. Lester, J. Chem. Phys. https://doi.org/10.1063/1.1624246 119, 9981 (2003). Google ScholarScitation, ISI
  17. 17. J. Matthews, A. Sinha, and J. S. Francisco, J. Chem. Phys. https://doi.org/10.1063/1.1738105 120, 10543 (2004). Google ScholarScitation, ISI
  18. 18. I. M. Konen, I. B. Pollack, E. X. J. Li, M. I. Lester, M. E. Varner, and J. F. Stanton, J. Chem. Phys.(to be published). Google Scholar
  19. 19. G. Purvis and R. Bartlett, J. Chem. Phys. https://doi.org/10.1063/1.443164 76, 1910 (1982). Google ScholarScitation, ISI
  20. 20. K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon, Chem. Phys. Lett. https://doi.org/10.1016/S0009-2614(89)87395-6 157, 479 (1989). Google ScholarCrossref, ISI
  21. 21. J. D. Watts, J. Gauss, and R. J. Bartlett, J. Chem. Phys. https://doi.org/10.1063/1.464480 98, 8718 (1993). Google ScholarScitation, ISI
  22. 22. T. H. Dunning, J. Chem. Phys. https://doi.org/10.1063/1.456153 90, 1007 (1989). Google ScholarScitation, ISI
  23. 23. R. A. Kendall, T. H. Dunning, and R. J. Harrison, J. Chem. Phys. https://doi.org/10.1063/1.462569 96, 6796 (1992). Google ScholarScitation, ISI
  24. 24. D. E. Woon and T. H. Dunning, J. Chem. Phys. https://doi.org/10.1063/1.464303 98, 1358 (1993). Google ScholarScitation, ISI
  25. 25. J. A. Pople, M. Head-Gordon, and K. Raghavachari, J. Chem. Phys. https://doi.org/10.1063/1.453520 87, 5968 (1987). Google ScholarScitation, ISI
  26. 26. M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 98, Revision A.9, 1998. Google Scholar
  27. 27. D. T. Colbert and W. H. Miller, J. Chem. Phys. https://doi.org/10.1063/1.462100 96, 1982 (1992). Google ScholarScitation, ISI
  28. 28. Z. Bacic and J. C. Light, Annu. Rev. Phys. Chem. https://doi.org/10.1146/annurev.physchem.40.1.469 40, 469 (1989). Google ScholarCrossref
  29. 29. See EPAPS Document No. E-JCPSA6-122-009510 for parameters of the potential energy and dipole surfaces. A direct link to this document may be found in the online article's HTML reference section. The document may also be reached via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html) or from ftp.aip.org in the directory /epaps/. See the EPAPS homepage for more information. Google Scholar
  30. 30. J. M. Guilmot, M. Godefroid, and M. Herman, J. Mol. Spectrosc. https://doi.org/10.1006/jmsp.1993.1186 160, 387 (1993). Google ScholarCrossref
  31. 31. K. J. Feierabend, D. K. Havey, and V. Vaida, Spectrochim. Acta, Part A 60, 2775 (2004). Google ScholarCrossref
  1. © 2005 American Institute of Physics.