ABSTRACT
Recently, Gillespie introduced the τ-leap approximate, accelerated stochastic Monte Carlo method for well-mixed reacting systems [J. Chem. Phys. 115, 1716 (2001)]. In each time increment of that method, one executes a number of reaction events, selected randomly from a Poisson distribution, to enable simulation of long times. Here we introduce a binomial distribution τ-leap algorithm (abbreviated as BD-τ method). This method combines the bounded nature of the binomial distribution variable with the limiting reactant and constrained firing concepts to avoid negative populations encountered in the original τ-leap method of Gillespie for large time increments, and thus conserve mass. Simulations using prototype reaction networks show that the BD-τ method is more accurate than the original method for comparable coarse-graining in time.
- 1. D. T. Gillespie, J. Comput. Phys. 22, 403 (1976). Google ScholarCrossref
- 2. D. T. Gillespie, J. Phys. Chem. 81, 2340 (1977). Google ScholarCrossref
- 3. M. A. Gibsonand J. Bruck, J. Phys. Chem. A 104, 1876 (2000). Google ScholarCrossref
- 4. J. He, H. Zhang, J. Chen, and Y. Yang, Macromolecules 30, 8010 (1997). Google ScholarCrossref
- 5. H. Resat, H. S. Wiley, and D. A. Dixon, J. Phys. Chem. B 105, 11026 (2001). Google ScholarCrossref
- 6. D. G. Vlachos, Chem. Eng. Sci. 53(1), 157 (1998). Google ScholarCrossref
- 7. M. A. Snyder, A. Chatterjee, and D. G. Vlachos, Comput. Chem. Eng. (in press). Google Scholar
- 8. C. V. Raoand A. P. Arkin, J. Chem. Phys. 118, 4999 (2003). Google ScholarScitation
- 9. E. L. Haseltineand J. B. Rawlings, J. Chem. Phys. 117, 6959 (2002). Google ScholarScitation
- 10. D. G. Vlachos, Adv. Chem. Eng. (to be published). Google Scholar
- 11. D. T. Gillespie, J. Chem. Phys. 115, 1716 (2001). Google ScholarScitation
- 12. M. Rathinam, L. R. Petzold, Y. Cao, and D. T. Gillespie, J. Chem. Phys. 119, 12784 (2003). Google ScholarScitation
- 13. J. Puchaand A. M. Kierzek, Biophys. J. 86, 1357 (2004). Google ScholarCrossref
- 14. K. Burrage, T. H. Tian, and P. Burrage, Prog. Biophys. Mol. Biol. 85(2–3), 217 (2004). Google ScholarCrossref
- 15. M. Katsoulakis, A. J. Majda, and D. G. Vlachos, Proc. Natl. Acad. Sci. U.S.A. 100(3), 782 (2003). Google ScholarCrossref
- 16. M. A. Katsoulakis, A. J. Majda, and D. G. Vlachos, J. Comput. Phys. 186, 250 (2003). Google ScholarCrossref
- 17. M. A. Katsoulakisand D. G. Vlachos, J. Chem. Phys. 119, 9412 (2003). Google ScholarScitation
- 18. A. N. Shiryaev, Probability (Springer Verlag, Berlin, 1989). Google Scholar
- 19. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford Science, Oxford, 1989). Google Scholar
- 20. D. T. Gillespieand L. R. Petzold, J. Chem. Phys. 119, 8229 (2003). Google ScholarScitation
- 21. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Cambridge University Press, Cambridge, 1986). Google Scholar
- © 2005 American Institute of Physics.
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.

