No Access
Published Online: 21 December 2004
Accepted: October 2004
J. Chem. Phys. 122, 024112 (2005); https://doi.org/10.1063/1.1833357
more...
Recently, Gillespie introduced the τ-leap approximate, accelerated stochastic Monte Carlo method for well-mixed reacting systems [J. Chem. Phys. 115, 1716 (2001)]. In each time increment of that method, one executes a number of reaction events, selected randomly from a Poisson distribution, to enable simulation of long times. Here we introduce a binomial distribution τ-leap algorithm (abbreviated as BD-τ method). This method combines the bounded nature of the binomial distribution variable with the limiting reactant and constrained firing concepts to avoid negative populations encountered in the original τ-leap method of Gillespie for large time increments, and thus conserve mass. Simulations using prototype reaction networks show that the BD-τ method is more accurate than the original method for comparable coarse-graining in time.
  1. 1. D. T. Gillespie, J. Comput. Phys. 22, 403 (1976). Google ScholarCrossref
  2. 2. D. T. Gillespie, J. Phys. Chem. 81, 2340 (1977). Google ScholarCrossref
  3. 3. M. A. Gibsonand J. Bruck, J. Phys. Chem. A 104, 1876 (2000). Google ScholarCrossref
  4. 4. J. He, H. Zhang, J. Chen, and Y. Yang, Macromolecules 30, 8010 (1997). Google ScholarCrossref
  5. 5. H. Resat, H. S. Wiley, and D. A. Dixon, J. Phys. Chem. B 105, 11026 (2001). Google ScholarCrossref
  6. 6. D. G. Vlachos, Chem. Eng. Sci. 53(1), 157 (1998). Google ScholarCrossref
  7. 7. M. A. Snyder, A. Chatterjee, and D. G. Vlachos, Comput. Chem. Eng. (in press). Google Scholar
  8. 8. C. V. Raoand A. P. Arkin, J. Chem. Phys. 118, 4999 (2003). Google ScholarScitation
  9. 9. E. L. Haseltineand J. B. Rawlings, J. Chem. Phys. 117, 6959 (2002). Google ScholarScitation
  10. 10. D. G. Vlachos, Adv. Chem. Eng. (to be published). Google Scholar
  11. 11. D. T. Gillespie, J. Chem. Phys. 115, 1716 (2001). Google ScholarScitation
  12. 12. M. Rathinam, L. R. Petzold, Y. Cao, and D. T. Gillespie, J. Chem. Phys. 119, 12784 (2003). Google ScholarScitation
  13. 13. J. Puchaand A. M. Kierzek, Biophys. J. 86, 1357 (2004). Google ScholarCrossref
  14. 14. K. Burrage, T. H. Tian, and P. Burrage, Prog. Biophys. Mol. Biol. 85(2–3), 217 (2004). Google ScholarCrossref
  15. 15. M. Katsoulakis, A. J. Majda, and D. G. Vlachos, Proc. Natl. Acad. Sci. U.S.A. 100(3), 782 (2003). Google ScholarCrossref
  16. 16. M. A. Katsoulakis, A. J. Majda, and D. G. Vlachos, J. Comput. Phys. 186, 250 (2003). Google ScholarCrossref
  17. 17. M. A. Katsoulakisand D. G. Vlachos, J. Chem. Phys. 119, 9412 (2003). Google ScholarScitation
  18. 18. A. N. Shiryaev, Probability (Springer Verlag, Berlin, 1989). Google Scholar
  19. 19. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford Science, Oxford, 1989). Google Scholar
  20. 20. D. T. Gillespieand L. R. Petzold, J. Chem. Phys. 119, 8229 (2003). Google ScholarScitation
  21. 21. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Cambridge University Press, Cambridge, 1986). Google Scholar
  22. © 2005 American Institute of Physics.